
SlowComm: Design, Development and Performance
Evaluation of a new Slow DoS Attack

Maurizio Aielloa, Enrico Cambiasoa,∗, Gianluca Papaleoa

aIEIIT-CNR, National Research Council - via De Marini, 6 - 16149 - Genoa, Italy

Abstract

Internet transformed itself from a useful tool for communicating information

to a pervasive and necessary infrastructure for modern economy. Accordingly,

due to economic motivations, it became an arena for cyberwarfare and cyber-

crime. In this paper, we present the novel threat called SlowComm and we

analyze that it can successfully lead a DoS on a targeted system using a low

amount of attack bandwidth. We also analyze that the proposed attack is not

bounded to a specific protocol and should be considered a protocol independent

attack, proving the ability it has to affect different Internet services.

Keywords: denial of service; lbr dos attack; cyberwarfare; slow dos attack;

protocol independence

1. Introduction

In the last years, the advent of the Internet has made it the most important

communication medium of the world. Because of this, Internet has to be kept a

safe place, in order to provide a secure communication environment to its users.

In the arena of Internet attacks, cyberwarfare operations are executed in or-

der to create an internal or external damage to the network, indirectly targeting

the real/physical world too. In particular, cyberwarfare term refers to politically

∗Corresponding author
Email addresses: maurizio.aiello@ieiit.cnr.it (Maurizio Aiello),

enrico.cambiaso@ieiit.cnr.it (Enrico Cambiaso), gianluca.papaleo@ieiit.cnr.it
(Gianluca Papaleo)

Preprint submitted to Elsevier 31st January 2014

motivated hacking operations aimed to sabotage or espionage of an adversary in-

formation system. Currently, cyberwarfare operations equip governments with

an effective and powerful opportunity to counter their adversaries, even without

being a superpower. Indeed, cyberwarfare attacks only require hardware and

software weapons.

Among all the methodologies used to successfully execute a cyberwarfare op-

eration, denial of service attacks (DoS in the following) are executed to exhaust

victim’s resources, compromising the targeted systems’ availability, thus affect-

ing reliability for legitimate users. In case more than one attacking machine are

(willing or not) involved in the same attack, a Distributed DoS (DDoS in the

following) attack is executed (thus forming a botnet). Such approach is often

adopted since it provides additional resources to the attacker, thus causing a

more relevant damage on the victim system. Historically, we have assisted to

different well known DDoS attacks. In 2000, several companies including some

giants of the Internet such as eBay, Amazon or Yahoo have been targeted by

DDoS attacks [1]. Instead, in 2009, a Slowloris based attack has been executed

against the Iranian presidential elections [2]. More recently, in March 2013, the

most imponent DDoS attack has been launched against an anti-spam company

known as Spamhaus [3].

There are several approaches which can lead to a denial of service (e.g.

physical attack, exploit, flooding, etc. . .). Over all the approaches, we are

interested in analyzing Slow DoS Attacks (SDAs in the following), also known as

Low-Bandwidth Rate DoS (LBR DoS in the following) attacks, which represent

the second generation of network based DoS attacks. Particularly, the first

generation of such threats was based on flooding the victim with a large amount

of data, until its resources are overwhelmed and a DoS is reached. Differently,

the characteristic of a LBR DoS attack is to be able to cause a DoS using a

low amount of attack bandwidth [4]. Because of this, the resources needed to

successfully execute such attacks are reduced, thus making it a more dangerous

threat, as it could also be executed even from non performant devices.

In this paper, we present a Slow DoS Attack able to lead a DoS requiring a

2

tiny amount of attacking bandwidth. In Section 2 we report the related work

on the topic. Section 3 describes instead how the attack works, while in Section

4 we report implementation issues for the proposed attack. In Section 5 we

report an experimental test bed analyzing the ability the attack has to affect

different protocols. We then introduce important metrics for representing the

success of an attack in Section 6. In Section 7 we report the obtained results

accordingly to different implementation techniques. Finally, in Section 8 we

report the conclusions of the paper and possible extension to the work.

2. Related Work

Although several scientific studies are focused on network threats, a minority

is related to the development of novel threats. Indeed, most of the works focus

on providing a detection system: in [5] a defense mechanism against DDoS

attacks has been provided, based on a targeted filtering of network packets.

Instead, [6] introduces a novel solution for limiting the amount of distributed

attacks traffic, while [7] provides a defence mechanisms against the SYN flood

attack. Relatively to slow DoS menaces, in [8] a protective solution for cloud

systems has been introduced, relatively to HTTP-DoS and XML-DoS attacks.

Instead, if we analyze the evolution of Denial of Service attacks, the first

generation of menaces was based on flooding the victim with a high amount of

packets: a prominent flooding-based threat is the already cited SYN flood attack

[9], exploiting the TCP three-way handshake mechanism to maintain half-open

connections with the victim. UDP flooding and ICMP flooding attacks [10] send

a large amount of UDP/ICMP packets to generate a network link congestion

or system overload. A similar attack is Smurf [11], which sends spoofed echo

requests to a broadcast address, forcing a large amount of hosts to send echo

reply packets to the spoofed victim address.

Botnet tools such as LOIC, BlackEnergy, or Cythosia are used to execute

different (flooding based or not) distributed attacks, exploiting the resources

of multiple attacking hosts instead than executing the attack from a single

3

machine.

Considering the second generation of DoS attacks, in [12] a study on the slow

DoS field is provided, analyzing the current menaces and providing a taxonomy

of them. A first categorization is based on the attack feasibility, distinguishing

practical attacks from meta attacks: in the first case a definition of a specific

and directly implementable set of executable actions is provided; instead, a meta

attack abstracts the attack without bounding it to a specific implementation,

defining a set of guidelines aimed at leading a DoS on the victim. A different

categorization is instead based on the exploited resource, providing an accurate

taxonomy of the current menaces.

The first SDA threat is the Shrew attack [13], designed to send an attack

burst to the victim, deluding it (at the transport layer) that a high congestion

is affecting the network link. Mácia-Fernández et al. [14] propose instead the

LoRDAS attack, which is focused on concentrating the attack burst to specific

instants, thus reducing the bandwidth needed for the attack.

The most popular SDA could be considered the already mentioned Slowloris

attack [15], which exploits the HTTP protocol establishing a large amount of

pending requests with the targeted web server. An attack similar to Slowloris

is Slow HTTP POST [10], essentially varying the requests payload.

The Apache Range Header attack exploits the byte-range parameter of HTTP,

forcing the web server to replicate in memory the requested resource, thus po-

tentially delaying the response arrival time. Although it is currently mitigated,

this attack represented a serious threat to Apache running servers.

Unlike previous threats, the Slow Read SDA slows down the responses of

a web server, simulating a really small client side reception buffer and slowly

receiving the packets coming from the server.

Another interesting attack is the XerXes menace for executing an application

layer DDoS attack distributing it through the Tor network. A first version of the

attack, implemented by a user known as The Jester, has been publicly released

as a source code. Nevertheless, its behavior is similar to an HTTP flooding

4

attack, since attack resources are not optimized. A second version of the attack

has been announced (and never released) through a viral video on the web [16].

In a previous work [17] we have presented the SlowReq Slow DoS Attack.

The SlowComm attack proposed in this paper has to be considered as a relevant

extension to that work. Indeed, this paper extends the previous work introdu-

cing a novel and optimized menace. In order to optimize it, we also introduce

proper metrics and a network traffic modelization. Moreover, we provide an

accurate study relatively to the protocol independence feature of SlowComm.

3. Attack Description

The attack proposed in this paper, called SlowComm, is a Long Request

DoS attack [12]. It exploits a vulnerability on most server applications imple-

mentations, which limit the number of simultaneous threads on the machine.

Unlike flooding DoS attacks, which aim to overwhelm some network parameters

of the victim host, SDAs adopt a smarter approach, seizing all the available

connections with the application listening daemon. This approach requires a

very limited amount of attack bandwidth.

Particularly, SlowComm sends a large amount of slow (and endless) requests

to the server, saturating the available connections at the application layer on the

server while it is waiting for the completion of the requests. As an example we

refer to the HTTP protocol, where the characters sequence \r\n\r\n represent

the end of the request: SlowComm never sends these characters, forcing the

server to an endless wait. Additionally, the request is sent abnormally slowly.

Similar behavior could be adopted for other protocols as well (SMTP, FTP, etc.).

As a consequence, applying this behavior to a large amount of connections with

the victim, a DoS may be reached.

The requests sent to the server must be considered slow in terms of “little

amount of bytes sent per second”. Indeed, for the proposed attack this value

approaches an extremely low value: the attack bandwidth requirements for the

executed tests are less than 1 KB/s.

5

Analyzing how the attack works, since the attacker’s purpose is to seize all

the available connections on the targeted host, we could assume that a DoS is

reached some instants after the attack is launched. Nevertheless, the server may

have already established active and legitimate connections with other clients.

Those connections are working until they are closed. As soon as a connection

closure happens, its relative resources on the server are released, thus allowing

clients to establish new incoming connections. Because of this, the purpose of

the attacker is to replace all the freed connections with malicious ones. While

doing that, there could be a race condition between the attacker and some

other legitimate clients. Nevertheless, we could assume that sooner or later

the attacker would obtain the connections, since it would repeatedly try to

connect to the victim with an intelligent algorithm, turning aggressiveness and

stealthiness of the attack.

From the stealth perspective, the proposed attack is particularly difficult

to detect while it is active, since log files on the server are often updated only

when a complete request is received or a connection is closed: being our requests

typically endless, during the attack log files don’t contain any trace of attack.

Therefore, a log analysis can’t produce an appropriate warning in reasonable

times.

4. Attack Implementation

The SlowComm attack is composed by three components:

• connect component: establishes the connections with the server, thus open-

ing a large amount of connections, without sending any data to the server

• maintain component: maintains the connections with the server alive by

slowly sending urgent data to the victim through the established con-

nections, preventing a server connection close. The exploited resource,

according to taxonomy reported in [12] is the request timeout

• check component: detects the connections which have been closed by the

server, in order to make the first component seize those connections again

6

The maintain component makes use of the Wait Timeout parameter in-

troduced in [12] to manage the slowness of sending. In particular, for each

connection the attacker sends a single character (default one is a single space;

in general, each character is good) as the Wait Timeout expires. Then, the Wait

Timeout is restarted. Moreover, since relatively to most Linux hosts ACK pack-

ets not followed by a packet including a payload are ignored by TCP [18], the

maintaning phase is instantly executed after a connection has been established,

thus immediately sending to the server a single character.

Instead, the check component repeatedly checks the status of the established

connections, in order to notify the connect component in case a connection close

has happened. Thanks to this component, the attack is able to autonomously

re-establish and maintain during the attack a fixed amount m of connections

with the server.

Assuming the m value is equal to the maximum number of connections

accepted by the server and assuming that the server is vulnerable to a Long

Request DoS attack, we will analyze in the next section how the server may

react to the attack.

5. Experimental Test Bed

We have executed two different sets of experimental tests. Once per second,

the number of connections established with the application server has been

monitored. Such approach provides us an accurate way to report the attack

status/success during the time.

5.1. HTTP Tests

We have attacked an Apache 2 web server running on a Linux based host.

The choice of Apache is driven by the fact it is one of the most common web

server daemons [19].

Trials have been executed comparing different attacks by changing the con-

figuration on targeted system, enabling one of the following modules:

7

• mod-security, a module for managing the security of a web server; in

particular, from version 2.5.13, a new feature has been implemented, fo-

cusing on pending requests based Slow DoS Attacks prevention: indeed,

the new directive SecReadStateLimit can be used to reduce the number

of threads in the state SERVER_BUSY_STATE for each IP address.

• reqtimeout, a module which provides the opportunity to set temporal

and bandwidth limits for the received requests.

Even if other modules may be used to reach similar results (such as the

limitipconn module, which behaves in our case similarly to mod-security),

we have selected these two modules because they are widely used and tested

and probabily the most effective and immediately available on Linux platforms.

The Apache server has been configured to serve at most rmax = 150 simul-

taneous connections (through a directive of Apache). This value often represents

the default configuration value. Having a known rmax value, by checking the

connections status on the targeted server, we are able to analyze the attack

success during the time in a detailed way, thus being able to identify a full DoS

on the attacked server.

During our tests the attack has been configured to create at most n = rmax

connections with the victim. By chosing this value, we are able to analyze if a

DoS is reached on the victim, requiring to the attacker the minimum amount

of resources potentally able to lead a DoS on the targeted server.

We have executed the attack against a server equipped with the modules

described above, enabling them one at time on the victim host. We have also

analyzed how the proposed tool behaves against a “pure” web server, without

any protection module.

In particular, for mod-security we have configured it to serve at most

rsim =
rmax
10

= 15 simultaneous connections for each IP address. In general,

as long as rsim < rmax , we don’t expect a DoS on the victim. In any way, our

desire is to analyze the behavior of the attack.

The reqtimeout module has been instead configured to wait at most Ti = 20

8

seconds for the first byte of the request header. From then, a minimum band-

width rate in reception of Bmin = 500 B/s is required. Moreover, connections

are closed after a wait of Tf = 40 seconds in total.

We choose a T = 600 seconds long attack and a Wait Timeout TWT = 60

seconds, lower than the request timeout on the server, configured at TS = 300

seconds, which represents the default value on Apache web servers. Therefore,

we expect that connections are not closed by the server through its request

timeout.

Figure 1 reports the results of the experiments we have executed on the

Apache protection modules described above.

140

120

100

80

60

40

20

0

Es
ta

bl
ish

ed
 C

on
ne

ct
io

ns

6005004003002001000
Time (in seconds)

SlowComm against Apache2 HTTP Server equipped with protection modules
(Optimal Greedy-Like Approach)

no modules
mod-security module
reqtimeout module

Figure 1: SlowComm Experiments Against an Apache2 Web Server

As shown in figure, the attack is completely successful if no protection mod-

ules are running. Indeed, in this case all the available connections on the victim

are established by the attacker after a few seconds, and they are maintained act-

ive for the whole attack duration. Conversely, mod-security can successfully

reduce the attack impact on the server. Nevertheless, in this case a distributed

attack surely leads to a DoS, since the behavior of this module can’t mitigate a

9

running DDoS executed by m agents, when rmax ≤ m · rsim . Finally, regarding

reqtimeout, each connection is closed by the server after Ti seconds of inactiv-

ity: however, the attack is able to detect a server-side connection close, thus

re-establishing the connections, leading to another DoS. Therefore, we can state

that this module can’t effectively mitigate a SlowComm attack: as can be seen

in Fig. 1, connection closures are detected and re-established by the attacker,

thus reaching the DoS state again.

5.2. Non-HTTP Protocols Tests

The second test set has been focused on analyzing how the attack behaves

targeting protocols different from HTTP. Indeed, conversely from other slow

DoS threats, SlowComm sent messages are not bounded to a specific protocol,

since they cointain a single repeated character. Many server implementations

are in fact designed to parse messages only after an entire line or a full request

are received.

In order to prove the ability to affect different protocols without requiring

amendments to the SlowComm implementation, we have targeted both FTP and

MySQL services, attacking in particular proftpd and postfix daemons running on

a Linux based host.

Analougously to previous experiments, we have limited the number of the

maximum connections accepted by both FTP and SMTP servers to rmax = 100,

which has to be considered a high value: in case of FTP, the default proftp value

is 30, while in case of SMTP, the default value is 50. Then, we have executed

a SlowComm attack against them, for T = 600 seconds, using the same Wait

Timeout of TWT = 60 seconds adopted in previous tests.

As shown in Figure 2, the attacks are both successful: in both the cases

the DoS state is reached after a few seconds and maintained during the time,

although a server side timeout of proftpd automatically closes the connections

after almost 300 seconds, returning a 421 Login Timeout error.

10

100

80

60

40

20

0 E
st

ab
lis

he
d

Co
nn

ec
tio

ns

550500450400350300
Time (in seconds)

20151050

SlowComm against non-HTTP protocols
FTP Protocol
SMTP Protocol

Figure 2: SlowComm Experiments Against FTP and SMTP Services

6. Metrics Definition

Analyzing Figure 1 relative to the experimental tests on HTTP protocol, it’s

possible to distriminate between three different cases:

(i) in case no modules are installed on the server, once the DoS is reached, it

is continuously maintained,

(ii) if the mod-security module is installed on the server, the DoS is never

reached, until rsim < rmax , finally

(iii) if the reqtimeout module is installed on the server, an alternation of DoS

and non-DoS state occurs.

Our intent here is to define various metrics which define if an attack is better

than another one, under certain conditions.

6.1. Network Traffic Representation Model

Before defining metrics characterizing the success of an attack, we have first

to analyze the communication between attacker and victim, by representing the

connection establishment process through a sequence-like diagram. In particu-

lar, accordingly to Figure 3, we define the following time variables:

11

• δ the time needed to the attacker to send a packet to the victim, and vice

versa,

• ε the time passed between the establishment of two sequential connections,

• n the number of simultaneous connections established with the victim by

the attacker (in order to reach a DoS, n ≥ rmax is usually needed),

• φ the time needed to the attacker to detect a connection closure, once the

connection-close packet is arrived.

Relatively to the δ, ε, and φ parameters, it’s clear that their values are

variable. Nevertheless, for the sake of simplicity, we can represent them as fixed

(average) values, without losing in generality on the model.

Attacker Victim

c1

c2.
.
.

cn

d1

d2

c1

c2.
.
.

ε

ε φ

φ

Tc

δ

ε

TDoS

ε

ε

(n− 1)ε
Te

Ti

Figure 3: Connections Establishment During a SlowComm Attack

As reported in Figure 1, in case connections are closed indiscriminately (such

as under reqtimeout conditions), behavioral cycles are experienced. In partic-

ular, let’s define Te the time needed to reach a DoS from the beginning of the

cycle as reported in Equation 1.

Te = δ + (n− 1) · ε (1)

12

Moreover, let’s define Ti as the average connection duration. In case con-

nections are never closed by the victim, we will potentially have Ti →∞ , since

after a connection has been established, it is maintained alive for the whole at-

tack duration. On the other side, in case connections are closed after some sort

of timeout expiration, as happens in case of a server equipped with reqtimeout,

the Ti parameter will typically assume a fixed value.

During the attack execution, in case of a finite Ti , we can analyze that a

series of cycles are experienced, where each cycle lasts Tc seconds, defined as

reported in Equation 2.

Tc = 2 · δ + Ti + φ (2)

On the other side, in case of an infinite Ti , due to Equation 2, we also have an

infinite Tc.

At this point, we can define TDoS as the DoS duration for a single cycle, as

reported in Equation 4.

TDoS = Ti − (n− 1) · ε (3)

Since from 4 Ti can be defined in function of TDoS :

Ti = TDoS + (n− 1) · ε (4)

We can finally redefine Tc as reported in Equation 5.

Tc = Te + TDoS + δ + φ (5)

The introduced parameters will be now used to define metrics characterizing

the success of an attack.

6.1.1. Maximum Attack Peak

Let’s define ct the number of connections established with the attacker at

time t. Let’s define f(t) = ct the function representing the connections estab-

lished by the attacker during the attack execution time.

We can define the maximum attack peak Mpeak, defined as follows:

Mpeak = max(f) (6)

13

This value provides a numerical value to the maximum damage created by

the attack against the targeted server. Moreover, it gives the attacker a quant-

itative measure for identify how many attacking machines at minimum have to

simultaneously execute the attack in order to lead a DoS on the victim, without

considering the DoS duration.

6.1.2. Attack Influence

The success of an attack could be defined in function of the integral of the

connections established with the attacker during the attack execution time. In

particular, assuming n the number of creations the attackers needs to establish,

and being T the attack duration, we define η the attack influence on the targeted

server, as reported in Equation 7.

η =
1

n T

∫ T

0

f(t) dt (7)

This value provides the overall damage created by the attack on the targeted

server. In particular, since 0 ≤ η ≤ 1 , this value effectively represents the ability

the attack has to reach the goal of the attacker. Indeed, since the attacker’s

purpose is to constantly seize a certain amount n of connections with the victim’s

server, for η = 1 the goal is reached from the beginning of the attack to the end.

Conversely, for η = 0 the goal is never reached. For other η values, the goal is

partially reached: in this case, the average number of connections established

during the attack is n̄ , defined as reported in Equation 8.

n̄ = η · n =
1

T

∫ T

0

f(t) dt (8)

In reality, it’s important to notice that, due to physical limits bounded to packets

transmission, we always have a first attack period where the server does not

experiences a DoS. In particular, in real conditions we always have:

Te > 0 (9)

Consequently, in the initial period there surely exists a t such as f(t) < n .

Therefore, in real conditions, analyzing the whole attack duration, we always

have η < 1 .

14

Instead, if we consider the attack influence after connections have been es-

tablished by the attacker, we have η ≤ 1 . Therefore, let’s define ητ the attack

influence limitedly to the time starting from τ and ending with T . In particular,

we have τ ≤ T . Moreover, we can now generalize definition of η defining it in

function of the starting period to consider, as reported in Equation 10.

η(τ) =
1

n (T − τ)

∫ T

τ

f(t) dt (10)

At this point, we can combine Equation 7 with Equation 10 defining η =

η(0) . Moreover, while we have η < 1 , we have η(τ ′) ≤ 1 for each τ ′ ≥ Te.

These definitions may be used to compare different attacks, in order to

identify the influence of the menaces during the whole attack duration or dur-

ing specific temporal limits. Indeed, it may be interesting compare two different

threats by analyzing the effects on the targeted server, not only relatively to the

whole attacks duration, but starting from the time a DoS is reached, until the

end of the attack. In this case, even if one attack may reach the DoS slowly,

the DoS may be maintained for a longer time.

6.1.3. DoS Percentage

In case connections are closed (such as when reqtimeout is installed on the

victim), we want to properly define a percentage of DoS experienced on the

server during the attack execution time.

Therefore, relatively to a single cycle, we can finally define PDoS the per-

centage of DoS, as reported in Equation 11.

PDoS =
TDoS
Tc

(11)

7. Obtained Results

We have executed tests by varying the attack implementation, adopting dif-

ferent approaches. We will now describe in detail the implementative techniques

used.

15

7.1. Implementation Techniques

Analyzing the attacking results obtained after the execution of a first ver-

sion of the SlowComm attack, we have noticed an interesting behavior in case

reqtimeout module is enabled on the Apache server. As a consequence, we

have decided to adopt different implementative approaches during the attack

execution. Relatively to a reqtimeout condition, we will now describe in detail

the implementation techniques we have integrated into the tests.

7.1.1. Non Optimal Greedy-Like Implementation

Our first implementation adopted a “non optimal greedy-like” approach,

designed to re-establish connections as soon as a closure is identified by the

attacker, maintaining the three-flows based implementation described in Sec-

tion 4. Moreover, we have introduced short delays to reduce the computational

resources needed to execute the attack. Being this balancing choice driven by

the fact that we believe that such menaces may also be executed from non-

performant hosts, we have preferred to maintain the execution as light as pos-

sible. Nevertheless, we have realized that such approach induces inefficiency.

Indeed, although for short time analysis the DoS state is reached at any execu-

tion cycle, this is not true for long execution times. In particular, TDoS values

decrease almost at any execution cycle and after some time a full DoS is not

reached anymore (note that during our tests n = rmax). This fact is highlighted

in Figure 4, where it’s possible to analyze that the DoS duration between first

execution cycles is longer than the DoS duration related to final cycles of our

tests. Indeed, in figure it’s possible to notice that delays introduced in a cycle

are replicated to the next cycles, thus maintaining and replicating them for the

whole attack duration.

In order to solve this problem, we have decided to introduce two additional

implementations, with the purpose of comparing different approaches applicable

to the same attack.

16

100

80

60

40

20

0

Es
ta

bl
ish

ed
 C

on
ne

ct
io

ns
 (

%
)

806040200
 Time (in seconds)

600580560540520500

SlowComm against Apache2 HTTP Server equipped with reqtimeout module:
Non-Optimal Greedy-Like Approach

Figure 4: SlowComm Non-Optimal Greedy-Like Approach Execution Against an Apache2
Web Server equipped with reqtimeout module

7.1.2. Optimal Greedy-Like Implementation

Therefore, we have decided to implement an “optimal greedy-like” approach.

Unfortunately, although it’s possible to define a pure greedy algorihm, hard-

ware and software limits prevent a pure greedy execution. Even if the optimal

greedy-like approach represents in our case an ideal solution, due to the low

requirements of the proposed attack, it’s often a good choice to balance attack

efficiency with resource consumption. In particular, the optimal greedy-like al-

gorithm we have implemented treats each connection separately on a specific

program execution flow, while an additional maintaining flow is used. Moreover,

unlike in our non optimal greedy-like implementation, in this case we don’t use

delays. Therefore, accordingly to Figure 3, we typically have in this case reduced

φ values.

7.1.3. Lazy-Like Implementation

We have also chosen to adopt a different approach. Particularly, we imple-

mented a “lazy-like” algorithm, with the purpose of breaking the relationship

between DoS durations during execution cycles. Indeed, adopting the lazy-like

approach, two TDoS values related to two different execution cycles are uncor-

17

related. Moreover, we have maintained the implementation based on the three

components described above. In particular, after detecting a connection closure,

the lazy-like algorithm waits for all the connections to be closed by the server,

thus re-establishing them. Therefore, in case a delay is experienced, such as

reported in Figure 4, it will only affect the current execution cycle and it will

not be propagated during the whole attack duration.

Indeed, since connection closures delays are not related to connection estab-

lishments accomplished at the next execution cycle, the delay is not maintained

during the attack execution. As a consequece, the DoS leaded on the victim

potentially maintains the same characteristics of the initial DoS.

Figure 5 reports the traffic representation model relatively to a lazy-like

algorithm.

Attacker Victim

c1

c2.
.
.

cn

d1

d2
.
.
.
dn

c1

c2.
.
.

ε

ε

ε
φ

Tc

δ

ε

TDoS

ε

ε

(n− 1)ε
Te

Td

Ti

Figure 5: Connections Establishment During a SlowComm Attack Adopting a Lazy-Like
Algorithm

In this case, it may be relevant to consider Td , defined as the time needed to

the victim to destroy the connections established by the attacker, as reported

18

in Equation 12.

Td = Te (12)

Moreover, cycle time Tc value is defined as reported in Equation 13.

Tc = Te + TDoS + Td + φ (13)

Hence, due to Equation 12:

Tc = 2 · Te + TDoS + φ (14)

Comparing Equation 14 with Equation 5, since, due to Equation 1, Te > δ ,

in this case the cycle times are longer than in case a greedy-like approach is

adopted.

7.2. Experimental Results

We have executed trials for the implementation techniques described above.

We have analyzed the results of the three implementation techniques by using

different rsim values (and defining n = rsim): 10, 100, and 1000. In each case,

we have analyzed the following values: Mpeak, PDoS , and η. Moreover, we have

also analyzed how the Slowloris attack [15] behaves under these conditions, to

highlight the enhancements carried out by SlowComm.

Results are reported on Table 1.

Table 1: Summary of the Obtained Results for Different Implementations

n Parameters
SlowComm

Slowloris
Opt. Greedy Non Opt. Greedy Lazy

10

Mpeak 10 10 10 10

PDoS 0.99329 0.9396 0.98993 0.13591

η 0.99446 0.9849 0.99161 0.13591

100

Mpeak 100 100 100 100

PDoS 0.92114 0.68289 0.87584 0.092282

η 0.98399 0.92032 0.93148 0.13742

1000

Mpeak 1000 1000 1000 252

PDoS 0.25168 0.78356 0.82886 0

η 0.95418 0.9108 0.90732 0.034277

It’s possible to notice that for all the tests we have executed, SlowComm

results are better than Slowloris ones. In particular, for n = 10 and n = 100

19

the optimal greedy-like implementation is preferrable. Nevertheless, for high n

values, the algorithm become computationally heavy and it is no longer work-

ing better than other SlowComm approaches. This is given by the fact that

in this case more program execution flows are executed in a “non-stop” way.

Indeed, in case of a distribute attack, if only Mpeak and η values are considered,

the optimal-greedy approach may still result the better choice. Nevertheless,

since such threats may also be executed from non-performant hosts with lim-

ited processing power, attack resources consumption should also be evaluated.

Therefore, in case of high n values, the optimal greedy-like approach should be

discarded, if the attack is not distributed.

8. Conclusions

In this paper we have presented a novel Slow DoS Attack which may be

potentially used for cyberwarfare operations. We have described in detail how

the attack works, testing its ability to lead a DoS on a server, analyzing differ-

ent servers configurations and different service types. We have also considered

different implementation approaches, evaluating how the attack success varies

for different algorithms, deeply analyzing server configurations able to mitigate

the attack or trying to counter it. We have introduced three different imple-

mentative approaches in order to test the attack success by varying the adopted

approach, through parameters we have introduced with the aim of defining the

success of an attack. We have also compared our approaches to a current menace

known as Slowloris, demonstrating that the proposed attack is more successful

from any point of view.

During the execution of the tests, we realized that under some circumstances,

the proposed attack is not able to maintain a full and continuous DoS on the

victim, a possible extension to the work may be focused on making SlowComm

a mixed attack, altering its behavior and making it also behave like a LoRDAS

attack [14]. In this case, once a connection closure pattern is detected by the

attacker, a small attack burst would be executed just before the closure happen,

thus maintaining a full and continuous DoS on the victim.

20

In this paper we have also analyzed how the attack behaves with different

protocols, showing that some sort of protocol independence feature occurs. Even

if this feature is common on flooding DoS attacks, due to the fact they work

at IP level, it’s a novel concept relatively to SDAs, usually designed to affect

a specific application protocol. Therefore, further work will be focused on an

accurate analysis of the protocol independence feature for Slow DoS Attacks.

References

[1] e. a. F. Lau, “Distributed denial of service attacks,” Systems, Man, and

Cybernetics, 2000 IEEE International Conference on, vol. 3, pp. 2275–2280,

2000.

[2] e. a. L. C. Giralte, “Detecting denial of service by modelling web-server

behaviour,” Computers & Electrical Engineering, 2012.

[3] B. Genge and C. Siaterlis, “Analysis of the effects of distributed denial-of-

service attacks on mpls networks,” International Journal of Critical Infra-

structure Protection, 2013.

[4] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of ser-

vice attacks and counter strategies,” IEEE/ACM Transactions on Network-

ing (TON), vol. 14, no. 4, pp. 683–696, 2006.

[5] e. a. S. Chen, “Stateful ddos attacks and targeted filtering,” Journal of

network and computer applications, vol. 30, no. 3, pp. 823–840, 2007.

[6] V. A. Siris and I. Stavrakis, “Provider-based deterministic packet mark-

ing against distributed dos attacks,” Journal of Network and Computer

Applications, vol. 30, no. 3, pp. 858–876, 2007.

[7] e. a. H. Safa, “A collaborative defense mechanism against syn flooding

attacks in ip networks,” Journal of Network and Computer Applications,

vol. 31, no. 4, pp. 509–534, 2008.

21

[8] e. a. A. Chonka, “Cloud security defence to protect cloud computing against

http-dos and xml-dos attacks,” Journal of Network and Computer Applic-

ations, vol. 34, no. 4, pp. 1097–1107, 2011.

[9] e. a. H. Wang, “Detecting syn flooding attacks,” INFOCOM 2002. Twenty-

First Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE, vol. 3, pp. 1530–1539, 2002.

[10] e. a. S.-j. Kim, “Ddos analysis using correlation coefficient based on

kolmogorov complexity,” in Grid and Pervasive Computing, pp. 443–452,

Springer, 2013.

[11] e. a. A. Kotkar, “Network attacks and their countermeasures,” Network,

vol. 1, no. 1, pp. 85–89, 2013.

[12] e. a. E. Cambiaso, “Slow dos attacks: definition and categorisation,” Inter-

national Journal of Trust Management in Computing and Communications

- In press article, 2013.

[13] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of ser-

vice attacks: the shrew vs. the mice and elephants,” Proceedings of the

2003 conference on Applications, technologies, architectures, and protocols

for computer communications, pp. 75–86, 2003.

[14] e. a. G. Macia-Fernandez, “Evaluation of a low-rate dos attack against

iterative servers,” Computer networks, vol. 51, no. 4, pp. 1013–1030, 2007.

[15] K. Sourav and D. P. Mishra, “Ddos detection and defense: client termina-

tion approach,” Proceedings of the CUBE International Information Tech-

nology Conference, pp. 749–752, 2012.

[16] A. M. Freed, “Exclusive Video of XerXeS DoS Attack

- available at http://www.infosecisland.com/blogview/

2990-Exclusive-Video-of-XerXeS-DoS-Attack.html,” Date Accessed

in December 13, 2013.

22

http://www.infosecisland.com/blogview/2990-Exclusive-Video-of-XerXeS-DoS-Attack.html
http://www.infosecisland.com/blogview/2990-Exclusive-Video-of-XerXeS-DoS-Attack.html

[17] e. a. M. Aiello, “Slowreq: A weapon for cyberwarfare operations. character-

istics, limits, performance, remediations,” International Joint Conference

SOCO13-CISIS13-ICEUTE13, pp. 537–546, 2014.

[18] G. Huston and E. Aben, “The Curious Case of the Crooked

TCP Handshake - available at https://labs.ripe.net/Members/gih/

the-curious-case-of-the-crooked-tcp-handshake,” Date Accessed in

December 2, 2013.

[19] e. a. Y. Liang, “The effect of real-valued negative selection algorithm on

web server aging detection,” Journal of Software, vol. 7, no. 4, pp. 849–855,

2012.

23

https://labs.ripe.net/Members/gih/the-curious-case-of-the-crooked-tcp-handshake
https://labs.ripe.net/Members/gih/the-curious-case-of-the-crooked-tcp-handshake

	Introduction
	Related Work
	Attack Description
	Attack Implementation
	Experimental Test Bed
	HTTP Tests
	Non-HTTP Protocols Tests

	Metrics Definition
	Network Traffic Representation Model
	Maximum Attack Peak
	Attack Influence
	DoS Percentage

	Obtained Results
	Implementation Techniques
	Non Optimal Greedy-Like Implementation
	Optimal Greedy-Like Implementation
	Lazy-Like Implementation

	Experimental Results

	Conclusions

