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ABSTRACT
Mobile Edge Computing (MEC) is an emerging technology that
aims at pushing applications and content close to the users (e.g.
at base stations, access points, aggregation networks) to reduce
latency, improve quality of experience, and ensure highly e�cient
network operation and service delivery. It principally relies on
virtualization-enabled MEC servers with limited capacity at the
edge of the network. One key issue is to dimension such systems
in terms of server size, server number and server operation area
to meet MEC goals. In this paper, we propose a graph-based algo-
rithm that, taking into account a maximum MEC server capacity,
provides a partition of MEC clusters, which consolidates as many
communications as possible at the edge. We use a dataset of mo-
bile communications to evaluate it with real world spatio-temporal
human dynamics. In addition to quantifying macroscopic MEC
bene�ts, the evaluation shows that our algorithm provides MEC
area partitions that largely o�oad the core, thus pushing the load at
the edge (e.g., with 10 small MEC servers around 55% of the tra�c
stay at the edge), and that are well balanced through time.

CCS CONCEPTS
•Networks→ Network design principles;

KEYWORDS
MEC, server clustering, load-balancing.

1 INTRODUCTION
Mobile Edge Computing (MEC - also know as Multi-access Edge
Computing [6], and similar to fog computing [7]) has emerged as
a key enabling technology for realizing the IoT and 5G visions. It
aims at reducing latency and ensuring e�cient network operation
and service delivery and pushing content and services close to the
users. Numerous MEC applications are already envisioned and
investigated, for example: chat/video analytics, video acceleration,
augmented reality, location-based services, connected cars, and IoT
gateways [8].

In a MEC deployment MEC servers are postionned in the in-
frastructure close to the edge of the network (see Fig. 1): they
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Figure 1: MEC deployment: tasks and applications (e.g.,
video analytics, video customization) are mainly o�loaded
onto MEC servers at the edge of the network to reduce la-
tency and o�load the core network. Note that it can be an
n-level architecture.

are small-scale datacenters with low to moderate resources collo-
cated with the base stations, access points and/or placed in the ac-
cess/aggregation network. �ey leverage virtualization to support
MEC applications run as virtual machines, containers, unikernels
etc. �e purpose of MEC servers is to host as many applications as
possible at the edge to improve latency and alleviate congestion in
the core. MEC thus performs application and network o�oading
from the core data center on to the edge.

�e central decision in a MEC design is to decide which users,
applications and share of tra�c should be handled by the MEC
servers. To address this key issue we name MEC clusters the area,
and by extension the base stations and the users in the area, served
by a MEC server. Indeed the e�ciency of a MEC system heavily
depends on such aspects as the distribution of communications and
workloads in time and space. Its cost depends on server density,
capacity and interconnection. Imbalanced MEC clusters that handle
highly di�erent tra�c volumes would lead to an ine�cient use of
resources and to unequal �ality of Experience (QoE). Put in terms
of MEC clustering, the key question is thus: how to have an e�cient
partition of MEC areas? From this, a placement of MEC servers can
be derived.

�e problem is aggravated by the well documented fact that
mobile tra�c is very dependent on time and locality. Indeed mobile
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communications are spatially distributed according to the popu-
lation density and activity, which vary in time. For instance, the
mobile tra�c in the business areas di�er from the mobile tra�c
in the transport, residential and entertainment areas [11, 14, 17].
As it was shown by Qazi et al. [12], in a MEC perspective, such
variations have a direct impact on the load of the potential MEC
servers. In addition, it was shown by Tastevin et al. [14] that mo-
bile communications in an urban environment have a high spatial
locality - they tend to follow a power law, which motivates a local
consolidation of applications at MEC servers. Such properties will
be ampli�ed with the realization of the IoT and 5G visions [8].

�e large-scale dimension of MEC systems and mobile commu-
nications makes classic analytical and simulation-based approaches
inapplicable. In this paper, we thus investigate a graph-based
method. We propose an algorithm that, based on the spatial distri-
bution of the communications, �nds a MEC partition that favors
application instantiation at the edge instead of at the core. �e
resulting clusters correspond to MEC areas. Our algorithm takes
into account the maximum server capacity, that we express as the
maximum number of served communications, but that can be eas-
ily expressed in terms of resources (CPU, storage…) or application
instances. We evaluate it using a dataset of mobile communications
in a city provided by a mobile operator. We �rst show that the
clustering takes into account the spatial distribution of the commu-
nications to provide MEC clusters whose loads are well balanced
and that keep a large portion of the tra�c at the edge, thus o�oad-
ing the core. �en, we evaluate the MEC partition over a week of
communications and show that it largely supports the temporal
dynamics. �ere is almost no server saturation, i.e. tra�c o�oaded
to the core, while the loads remain balanced.

In summary, this paper makes the following contributions:
(1) We design a MEC clustering algorithm (Sec. 2) that consol-

idates as many communications as possible at the edge.
(2) We use a real-world dataset of spatially and temporally

distributed mobile communications (Sec. 3.1).
(3) We evaluate our proposal and show that, despite the spatial-

temporal dynamics of the tra�c, our algorithm provides
well-balanced MEC areas that serve a large part of the
communications (Sec. 3.2 and Sec. 3.3).

We discuss related work in Sec. 4 and conclude in Sec. 5.

2 MEC AREA CLUSTERING
In this section, we formulate the MEC area clustering problem that
we address and we present our graph-based algorithm.

2.1 Problem formulation
From a network system standpoint we consider a MEC deployment
as presented in Fig. 1. All users belong to a MEC cluster, a geo-
graphic area whose tra�c can be handled by a MEC server, that is a
small-scale datacenter with low to moderate compute and storage
resources. All user communications and applications, for instance
ephemeral per-communication unikernel-based video analytics ap-
plications, are either handled by the local MEC server (e.g. the blue
plain line in Fig. 1) or by a highly capacitated core data center (e.g.
the black do�ed line in Fig. 1), which can be farther in terms of
latency.

We argue that one of the key design issues in a MEC based
system is to e�ciently dimension MEC areas (or clusters). Such a
MEC geo-partitioning must have the following properties:

(1) MEC servers, as any compute, storage and network node,
have a maximum capacity (e.g. in terms of CPU, storage
resources or application hosting capabilities).

(2) MEC server loads should be balanced both spatially and
temporally to improve user experience.

(3) �e tra�c between the MEC servers and the core should
be minimized, in particular by consolidating applications
at the MEC server level, such that the global latency is
reduced.

2.2 Graph-based Algorithm
We now introduce our algorithm that, given a maximum MEC
server capacity, �nds MEC clusters (also referred to as MEC areas)
which tend to maximize the tra�c handled inside the clusters (i.e.
by the MEC servers).

Our algorithm is divided in two phases that are repeated itera-
tively. Assume that we start with two graphs that have the same
set N of nodes (see Fig. 2). �ese nodes correspond to the dis-
cretization of the area where the MEC communications demands
are distributed. �e �rst graph Ga = (N ,Ea ) represents the adja-
cencies of the nodes on the area. For instance, in a square grid,
a node (a grid cell) has up to 8 adjacent nodes (grid cells). �e
second graph G = (N ,E) represents the interactions (i.e. the com-
munications) between the nodes. �e weight wi, j ∈ R of the edge
ei, j ∈ E represents the amount of interaction (e.g. the number of
communications) between node i and node j. Note that a node i
can have interaction with itself, leading to a self-loop ei,i . So, in
this initial partition there are as many MEC clusters as there are
nodes.

First, we consider all the edges in E and we select the edge ei, j
that has the highest weight such that: i) node i and node j are
neighbors in the area (i.e. ∃ eai, j ∈ Ea ), ii) the amount of interaction
between node i and node j is equal or lower than the maximum
cluster capacity C (i.e. wi,i +wi, j +w j,i +w j, j ≤ C). �e selected
edge corresponds to the best interaction reduction at this stage.

Secondly, we cluster node i and node j, updating the graphs
Ga and G with a new node that represents their clustering. To
do so, the neighbors of the new node in GA and G are the former
neighbors of node i and node j. �e weights of the links between
the new node and its neighbors in G are given by the sum of the
weight of the links between the former node i and its neighbors and
the former node j and its neighbors. Finally, the weight of the new
self-loop corresponds to the sum of the two former self-loops plus
the weights between node i and node j. Once this second phase
(clustering) is completed, it is then possible to re-apply the �rst
phase (selection) of the algorithm to the resulting graphs and to
iterate (see Fig. 2).

By construction, the number of nodes (clusters) decreases at
each pass. �e passes are iterated until there are no more changes
meaning that a local minimum of MEC cluster interaction is a�ained.
�e �nal result of our algorithm corresponds to a partition of the
area into MEC clusters/areas whose load (self-loop weights) is
inferior but close to the maximum MEC server capacity C . Note
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Figure 2: Visualization of the steps of our graph-based algorithm. �e area where are distributed the MEC communications is
discretized into nodes which form MEC clusters. Each pass is made of two phases: one where the pair of neighbor nodes that
interact themost, while respecting themaximum cluster capacity, are selected; one where the two selected nodes are clustered
to build a new/updated graphs. �e passes are repeated iteratively until no pair of neighbor nodes can be merged. �e result
corresponds to a spatial partition of MEC clusters.

that it can be used in an n-level MEC architecture by applying it at
each level.

�e algorithm is reminiscent of the community detection algo-
rithms in complex networks (e.g. Louvain algorithm [3]) in the way
that it iteratively clusters nodes to increase a modularity (in our
case function of the weight of the self-loops). However, it di�ers
on several important points. First, it takes into account spatial
properties between the nodes via the graph Ga , which constrains
the clustering. Second, only two nodes are clustered at each iter-
ation. �ird, it considers a maximum clique/cluster capacity, that
corresponds to the weight of the self-loops. Note that this threshold
we introduce is adequate to our partitioning problem. However,
it could be removed from our algorithm, making it a similar yet
di�erent hierarchical clustering algorithm than community detec-
tion algorithms. Finally, we purposely present a simple description
of the algorithm, but heuristics may be introduced to improve its
performance or introduce variants (e.g. order the edges in the �rst
phase, consider more complex interactions such as communication
groups, perform a local search on the �nal result, consider di�erent
maximum cluster capacities etc.).

�e time complexity of the algorithm described as above is
O (E.N ), where E is the number of edges and N the number of
vertices. Indeed, the �rst phase basically consists in going through
all the E edges of G and �nding the non self-loop edge with the
maximum weight. �e second phase consists in adding and remov-
ing (i.e. clustering) nodes in graphs (Ga and G). With adjacency
lists, you simply need to iterate over the edge list of the nodes to
be clustered and update all those nodes. �e algorithm stops when
no pair of nodes can be merged anymore, which means maximum
N − 1 passes are done. �e number of edges E depends on the
nature of the graph. For example, it averages k .(N − 1)/2 in an

Erdös-Rényi graph [5], where k > 1 is the mean vertex degree. �e
complexity of our algorithm would thus be O (N 2). Note that it is
a pessimistic upper bound since at each pass both the number of
edges and vertices, and thus the number of operations, decrease.

3 EVALUATION AND ANALYSIS
In this section we evaluate our MEC clustering algorithm with a
real dataset of mobile communications. We �rst analyze the results
considering di�erent day types and di�erent periods of the day.
�en, we evaluate it through time.

3.1 Dataset
To evaluate our algorithm and show the bene�ts of the MEC ap-
proach compared to a classic centralized architecture, we use the
dataset published as Open Data by Telecom Italia in 2014 [1].

�is dataset contains geo-referenced Call Detail Records (CDRs)
over the city of Milan from November 1st, 2013 to January 1st,
2014 [2]. During this period, every time a mobile user engaged
a telecommunication interaction with another mobile user in the
region, a CDR was created containing the date time of the call and
the geographical locations of the mobile users (derived from the
location of the base stations they used). �e dataset was created
combining all this anonymous information, with a temporal ag-
gregation of time slots of ten minutes and a spatial aggregation
of square grid calls of 235x235 meters (a grid of 100x100 cells to
cover the city of Milan). �e number of records in the dataset S ′i (t )
follows the rule: S ′i (t ) = k .Si (t ) where k is a constant de�ned by
Telecom Italia. It aims at hiding the true number of calls. Since
Telecom Italia only possesses the data of its own customers, the
computed interactions are only between them. �is means that (at
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Figure 3: Normalized mobile communication intensity in
the city of Milan (5pm-6pm, 11/04/2013). �e communica-
tions are concentrated in the city center.

most) 34% of population’s data is collected, due to Telecom Italia’s
market share. Around 1,3 million people live in the city of Milan.

To evaluate our algorithm, we generate from this anonymized
dataset batches of communications aggregated by hour and spa-
tially distributed over the city of Milan. �e volume of generated
communications every hour is proportional to what was measured
by Telecom Italia (see Sec. 3.3).

Fig. 3 shows the normalized mobile communication intensity
distributed in the city of Milan between 5pm and 6pm during a
working day (Monday). We can clearly distinguish the city center,
which gathers most of the mobile calls.

3.2 MEC resources partitioning
Geo-clustering. We �rst illustrate the result of the geo-partitioning
algorithm. Fig. 4 presents the results of the geo-clustering algorithm
on Monday 11/04/2013 between 5pm and 6pm with a maximum
cluster capacity of 5% of the total communications, that represents
maximum 8,500 communications. �e algorithm started with 1,089
clusters (33 x 33) and took, without any code optimization, 18.73
seconds to provide this result. �e grey atomic squares correspond
to grid cells with no or very low tra�c. However, they could not be
ultimately merged to a neighbor cluster because it would have in-
creased their load above the maximum threshold. We thus consider
that if their intra-cluster tra�c is lower than 0.01% of the maximum
capacity, they do not form a cluster and their communications are
directly served in the core. We can see that the area of the clus-
ters that cover the city center is smaller than the ones that serve
low-density regions, the density of communications being higher
there (see Fig. 3). Moreover, as seen in Fig. 7, most of the loads are
close to the maximum server capacity. �e MEC areas are thus well
balanced.

Core o�loading. We then turn to the bene�ts of the MEC ap-
proach with respect to core o�oading, that is we look at which
portion of the communications is directly served at the edge. As the
communication demands are spatially distributed in time and space
according to human activity (residential, business, entertainment,
transport etc.), we consider a working day (Monday 11/04/2013) and

Figure 4: Clustering result for a maximum cluster capacity
of 5% of the total communications, i.e. 8,500 communica-
tions (5pm-6pm, 11/04/2013). �e numbers in the clusters
correspond to their load.

Figure 5: Proportion of intra MEC cluster tra�c (Monday
11/04/2013 and Sunday 11/10/2013).

Figure 6: Number of MEC clusters (Monday 11/04/2013 and
Sunday 11/10/2013).

a weekend day (Sunday 11/10/2103) at two periods: beginning of
the activities (7am to 8am) and communication peak (5pm to 6pm).
Fig. 5 shows the the amount of communications directly handled at
the MEC servers in function of the maximum MEC server capacity
(expressed in percentage of the total communications to serve).
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Figure 7: MEC cluster loads (5pm-6pm, 11/04/2013).

170,000 communications, derived from the dataset, were consid-
ered at each point. We can observe that an important part of the
communications does not have to go up to the core. For example,
with a maximum cluster capacity of 7.5%, which represents 12,750
communications, between 50% and 60% of the tra�c is directly ab-
sorbed by the MEC servers. �e core o�oading remains important
even for very small cluster capacities. We can also observe that the
gain varies according to the day and the time of the day. �e lower
gains are at the peak hour of the working day, while the upper
gains are at the beginning of the weekend day. �ese observations
can be explained by i) the spatial locality of the mobile communi-
cations and ii) the di�erence of human activities (mainly business
and transportation on Monday at 5pm and residential on Sunday
at 7am). Fig. 6 presents the corresponding number of MEC servers.
�ere is no major di�erence. Naturally, as the maximum cluster
capacity diminishes the number of clusters increases to serve tra�c
at the edge. Note that with a spatial uniform distribution of the
communications, we would have for instance 20 servers, instead of
11-15, for a maximum capacity of 5%.

Server load balancing. Fig. 7 shows the loads of the clusters
at the peak hour on Monday. We can observe that the partition,
and hence the load, is well balanced. Indeed, most of the clusters
have a load close to the maximum cluster capacity. Moreover, in all
cases, the median values almost match the maximum values. We
had the same observations for the other periods we evaluated.

3.3 �rough time
Core o�loading. We �nally evaluate the performance of our al-
gorithm through time. To this aim, we �rst use the mobile data
on a full week. We consider that at the peak hour of this period
(�ursday, 5pm, 11/08/2013), there are 170,000 communications per
hour. It represents more or less the volume of communications in
the city of Milan for the market share of Telecom Italia in 2013.
We retrieved from the dataset the proportion of communications
hour by hour and their spatial distribution. We then considered
three partitions obtained on Monday 11/04/2013 at di�erent hours
(7am-8am and 5pm-6pm) of the day and with di�erent maximum
cluster capacity (5% and 10% of the total communications at this
period of the day).

In Fig. 8a, we can observe that around 53% of the communications
are directly handled by the MEC servers during the working days.
�is share increases up to 61% during the week-end. Obviously, if

(a) Partition done at 5pm-6pm on Monday 11/04/2013 with a maximum cluster
capacity of 10% of the total communications.

(b) Partition done at 5pm-6pm onMonday 11/04/2013 with a maximum cluster
capacity of 5% of the total communications.

(c) Partition done at 7am-8am on Monday 11/04/2013 with a maximum cluster
capacity of 5% of the total communications.

Figure 8: MEC servers and core tra�c distributions over a
week for di�erent partitions.

we consider a maximum cluster capacity of 5% (Fig. 8b), the global
load distribution through time remains the same, but the tra�c
share of the MEC servers drops to approximately 45%. In both cases,
we can notice that the tra�c o�oaded to the core, that corresponds
to the local tra�c that could not be handled by MEC servers because
they were saturated, is very small (maximum 3.1% on 11/05/2013 at
12am). Finally, we can notice that, if we consider a partition done
in the morning (Fig. 8c) instead of the peak hour (Fig. 8b), the share
of the MEC servers slightly decreases, while they remain almost
unsaturated.

Server load balancing. At last, Fig. 9 presents the distribution
of the MEC server loads. �e partition corresponds to the one
shown on Fig. 4. It was done with the communications that occurred
between 5pm and 6pm. We can distinguish human activities, that
is low activity until 8am and a�er 9pm and two peaks around 10
am and 5pm. At each hour, the load is homogeneously distributed
on the servers.
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Figure 9: Normalized MEC cluster loads over a day
(11/04/2013) with a partition done at 5pm and a maximum
cluster capacity of 5% of the total communications.

4 RELATEDWORK
In the past few years, in parallel notably to the ETSI initiative [6]
and to the OpenFog Consortium [7], MEC has emerged as a new
research area. We present in this section related work.

Partitioning and MEC server placement: �e MEC server
placement problem was illustrated by Qazi et al. [12] who showed
that the number and the locations of MEC servers have a direct
impact on the QoE (imbalance loads and high latencies) and on the
operational cost. However, they did not address the problem. �ey
proposed an NFV-based orchestration for MEC. Note that the server
placement problem is signi�cantly di�erent from the conventional
base station site selection problem since, although both problems
are constrained by the deployment budget, placing edge sites is
coupled with the computational resource provisioning. Ceselli et
al. [4] have proposed an integer linear programming formulation
of the joint problem of base stations allocation to MEC servers and
routing to reduce infrastructure cost. Our proposal mainly di�ers
on three important aspects. First, they assume the locations of the
LTE 4G base stations are known. �eir analytical formulation does
not scale properly. Most of all, the clusters they obtained are not
geo-consistent, meaning that the base stations associated to a MEC
server can be completely sca�ered in space.

System approaches: While NFV has gained momentum, recent
proposals have focused on shortening network functions instantia-
tion and reducing their system footprint with approaches based on
unikernels [16]. In particular, it has been shown that an inexpensive
commodity server is able to concurrently run up to 10,000 special-
ized virtual machines, instantiate a VM in as li�le as 10 milliseconds,
and migrate it in under 100 milliseconds [9]. �is technology is
very promising in an MEC context where an application could be
instantiated on the �y at MEC servers for a user or a group of users
and shutdown once the communication is ended. Progress in this
direction complements our deployment work as it would make it
easier to instantiate locally applications at MEC servers.

Application/task o�loading: Application o�oading, both from
the device to the edge and from the core to the edge, has been
extensively studied [10]. It notably includes task decomposition,
assignment, and migration, server scheduling, and selection, con-
tent caching and pre-fetching. Some of the proposals are similar
to those addressed in Mobile Cloud Computing (MCC), which ad-
dresses distributed clouds [13, 15].

5 CONCLUSION AND PERSPECTIVES
MEC is a key technology to support the ever-increasing growth
of communication capability demands and realize the IoT and 5G
visions. As operators are transforming their network architectures
and are looking for deploying computation resources close to the
user to improve QoE, it is necessary to adequately dimension MEC
systems. In this paper, we presented a graph-based algorithm that
enables �nding a partition of MEC areas that consolidates tra�c at
the edge, in MEC servers. We evaluated it using a real world dataset
from a mobile operator. �e evaluation results, beyond quantifying
the bene�ts of the MEC approach, show that the core can be largely
o�oaded. �ey also show that the algorithm provides MEC areas
that are well balanced in terms of load. Finally, we ran simulations
over one week of communications and observed that there is almost
no saturation of the MEC servers, while the tra�c on the core is
largely reduced. In future work, we expect to explore several aspects
such as group communications, energy saving, and latency. We also
aim at combining our approach with online application o�oading
and migration.
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