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Abstract

The next generation of IoT scenarios must consider security aspects as a first
class component. As a core aspect, key management is crucial for the establish-
ment of security associations between endpoints. According to it, in this work
we propose a novel architecture of security association establishment based on
bootstrapping technologies in order to manage the life-cycle of cryptographic
keys in IoT. Based on our previous work, we propose a key derivation process
by using a lightweight bootstrapping mechanism specifically designed for IoT.
Then, the derived cryptographic material is used as an authentication creden-
tial of the EDHOC protocol, which represents an standardization effort for key
agreement in IoT. EDHOC is an application layer alternative to DTLS hand-
shake, in order to provide end-to-end security properties even in the presence
of intermediate entities, such as proxies. Evaluation results prove the feasibility
of our approach, which represents one of the first efforts to consider application
layer security approaches for the IoT.

Keywords: Internet of Things, Security Management, Bootstrapping,
EDHOC, Critical Infrastructure

1. Introduction

Security aspects represent an extremely limiting factor for the deployment
of IoT solutions [1]. As a core aspect, key management embraces the activities
to handle the entire lifecycle of cryptographic keys including their generation,
storage and establishment [2]. Like in the current Internet, these cryptographic
keys need to be employed by IoT endpoints to establish security associations for
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data protection. However, the realization of key management approaches for
IoT must overcome scalability, flexibility and performance issues, specially in
the case of resource-constrained devices. Furthermore, typical transport layer
approaches (i.e., based on TLS [3]) are no able to provide end-to-end security
in the presence of intermediate entities, such as proxies and brokers.

To mitigate this issue, recent standardization efforts are focused on the ap-
plication layer security into IoT constrained scenarios. In particular, within
the IETF, the Authentication and Authorization for Constrained Environments
(ACE) WG1 proposes the Ephemeral Diffie-Hellman Over COSE (EDHOC) [4].
EDHOC represents an authenticated and lightweight application-layer key man-
agement approach that provides Perfect Forward Secrecy (PFS) [5]. Further-
more, it is based on the use of CBOR Object Signing and Encryption (COSE)
[6], which is a compacted evolution of JSON Object Signing and Encryption
(JOSE)[7], so that message overhead is reduced. EDHOC provides a high level
of flexibility by enabling different authentication modes: pre-shared key (PSK),
raw public key (RPK) and certificates. However, according to EDHOC spec-
ification, authentication credentials are previously established by out-of-band
mechanisms, so it does not define any concrete approach to address this aspect.

This work aims to fill this gap through the integration with bootstrap-
ping technologies, so that EDHOC authentication credentials are derived from
the cryptographic material generated by the bootstrapping process. In par-
ticular, we consider the integration with LO-CoAP-EAP[8], which provides
a lightweight bootstrapping service that is specifically designed for IoT. LO-
CoAP-EAP makes use of the Constrained Application Protocol (CoAP) [9]
to transport Extensible Authentication Protocol (EAP) messages [10]. Con-
sequently, it leverages the use of Authentication, Authorization and Accounting
(AAA) infrastructures [11] for scalability reasons, while CoAP provides a more
lightweight approach as a EAP lower layer protocol compared to well-known
protocols, such as the Protocol for carrying Authentication for Network Access
(PANA) [12]. Indeed, it should be noted that LO-CoAP-EAP is derived from
CoAP-EAP [13], which represents an ongoing standardization effort in the ACE
WG. Based on the integration between LO-CoAP-EAP and EDHOC, the main
contributions of this paper are:

• Extension of LO-CoAP-EAP to derive cryptographic material that is em-
ployed at different layers to establish a security association between two
endpoints

• Design and implementation of a process to derive the EDHOC authentica-
tion credentials based on the use of PSK and RPK authentication modes.

• Deployment of the integration of LO-CoAP-EAP and EDHOC on real
hardware devices.

1https://datatracker.ietf.org/wg/ace/about/
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• Performance evaluation of the proposed approach and comparison with
state-of-the-art protocols, such as PANA.

The remainder of the paper is organized as follows. Section 2 describes
existing proposals related to the establishment of security associations in IoT
scenarios. Then, Section 3 presents EDHOC and LO-CoAP-EAP as the main
building blocks of our work. Section 4 describes the proposed architecture,
as well as the associated design considerations. Section 5 provides a detailed
description of the proposed approach, and Section 6 describe a use case in which
our proposal is considered. Then, the performance evaluation is given in Section
7. Finally, Section 8 concludes the paper with an outlook of our future work in
this area.

2. Related Work

To secure IoT communications, CoAP [9] specifies a binding to the Datagram
Transport Layer Security (DTLS) protocol [14]. According to it, the scientific
literature reports works that propose different modifications of DTLS to improve
its adaptation to constrained networks and devices. Specifically, [15] describes
a two-way authentication security scheme for IoT, which is mainly based on
the DTLS protocol. The implemented scheme uses a standard communication
stack based on 6LoWPAN [16] that is tested on a real hardware platform. Simi-
larly, [17] proposes a lightweight CoAP-DTLS scheme (Lithe) by using different
6LoWPAN header compression mechanisms. The aim is to reduce the message
overhead to avoid 6LoWPAN fragmentation, while DTLS security properties
are not compromised. Additionally, [18] presents a preliminary overhead esti-
mation for the certificate-based DTLS handshake and details three design ideas,
which are based on pre-validation, session resumption and handshake delega-
tion, in order to reduce such overhead. Likewise, in [19], authors provide a
communication architecture fully based on DTLS named SecureSense to secure
communication in cloud-connected IoT scenarios, considering the different se-
curity modes of CoAP, that is, PSK, RPK and certificates. However, due to
CoAP communications in IoT scenarios are usually performed through proxies
for improving scalability and efficiency [20], the usage of DTLS to protect such
communications requires the establishment of different security associations, in
such a way that end-to-end security cannot be provided.

Unlike DTLS-based proposals, application layer security emerges as a so-
lution to guarantee the end-to-end security, by providing a flexible alternative
that is independent of the protocols being used on lower layers. Based on it,
there are two novel specifications defined by the IETF ACE WG that employ
COSE [6], which, in turn, is based on the Concise Binary Object Represen-
tation (CBOR) [21]. On the one hand, the Object Security for Constrained
RESTful Environments (OSCORE) [22] is a protocol intended to protect CoAP
messages, that is, ensuring confidentiality and integrity of exchanged data. On
the other hand, EDHOC [4] is a lightweight key exchange protocol that aims
to establish shared symmetric keys between two endpoints. Even though it is a
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recent proposal, EDHOC has attracted the interest due to its flexibility to be
integrated with different protocols, and lightness, so it can be used on resource-
constrained devices and networks. Indeed, in our previous work, we propose the
use of EDHOC to derive and update LoRaWAN cryptographic material [23], in
which EDHOC overhead is compared with DTLS handshake. Furthermore, [24]
provides a new authorization and authentication framework for the IoT based
on OAuth [25] and a EDHOC-based key agreement approach. However, these
proposals do not provide evaluation results to demonstrate the feasibility of ED-
HOC. In addition, they do not consider the establishment of credentials that
are employed for authentication purposes during the EDHOC three-message
exchange.

Based on it, there is a real need to consider additional approaches to comple-
ment security association protocols (such as EDHOC), in order to manage the
lifecycle of the cryptographic material associated to an IoT endpoint. While re-
cent proposals [26] partially address this issue, we focus on the integration with
bootstrapping approaches to provide a more comprehensive solution. Indeed, in
the context of IoT, the bootstrapping is usually referred as the initial process
by which a device securely joins a network. Towards this end, the device is
authenticated in order to receive the required cryptographic material to become
a trusted party in a security domain [27]. Different works about bootstrapping
consider the use of pre-established shared key material and running a security
association protocol such as DTLS [28, 29, 30, 31, 32]. Furthermore, [33] aims
to make the use of PSK-based authentication scalable in IoT deployments. For
this, they introduce a trusted third party, so that key material is generated to
run the DTLS protocol. From the standardization point of view, the bootstrap-
ping is typically performed by using protocols such as PANA, which is employed
in the Zigbee IP standard [34] and proposed in works such as [35, 36, 37, 38]. In
this case, PANA is used to transport EAP messages (i.e., it acts as an EAP lower
layer). However, one of the main issues of PANA is that it was not designed with
the constraints of IoT in mind, as demonstrated by [39]. Consequently, there
is a need to design more lightweight bootstrapping approaches, while flexibility
and scalability associated to EAP can be still provided.

Based on our previous work [8], in this paper we consider the use of Low
Overhead CoAP-EAP (LO-CoAP-EAP) as a bootstrapping solution specifically
designed for IoT. Then, the cryptographic material generated from this pro-
cess is used to derive the EDHOC authentication credentials (based on PSK
and RPK authentication modes) that are employed during the three-message
exchange. Therefore, the resulting approach leverages the lightness of technolo-
gies, such as CoAP or COSE, as well as the flexibility associated with the use
of application layer security. Furthermore, unlike previous proposals, our pro-
posal is intended to provide a more comprehensive approach to key management
aspects in IoT scenarios.
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3. Preliminaries

As already mentioned, our proposal is based on the integration of LO-CoAP-
EAP and EDHOC. Consequently, this section aims to provide an overview of
both technologies.

3.1. EDHOC protocol

EDHOC [4] is a lightweight authenticated key exchange protocol that enables
to establish a cryptographic key between two entities. To this end, EDHOC
implements the Elliptic Curve Diffie-Hellman algorithm with ephemeral keys
(ECDHE) [40], by which both entities must generate a new ephemeral key pair
every time they launch this protocol. Therefore, EDHOC also provides the
Perfect Forward Secrecy (PFS) property [5]. Additionally, EDHOC supports the
same authentication modes as DTLS (i.e., PSK, RPK, and certificates). Hence,
the key generation process remains independent with respect of the selected
authentication mode. Moreover, EDHOC defines a three-message exchange in
order to negotiate certain security parameters to fulfill its functionality. These
messages are encoded following the CBOR representation [21] and protected
by the COSE standard [6]. This way, a minimum message size is ensured in
contrast to other JSON-based representation formats (such as JWS [41] and
JWE [42]) and, therefore, network overhead is reduced.

In spite of the advantages of EDHOC, nowadays, DTLS [14] is widely consid-
ered as the main alternative to protect communications between two endpoints
in IoT constrained scenarios [9]. Similarly to TLS [3], DTLS is a two-layer
protocol, where the lower layer protocol encapsulates messages of an upper
layer protocol to provide certain functionality (e.g., the security parameter es-
tablishment). However, the common presence of intermediate entities in these
scenarios, such as proxies or publish/subscribe brokers, implies that DTLS can
only provide hop-by-hop security [20]. Unlike DTLS, EDHOC is able to ensure
end-to-end security by selectively protecting specific fields of the message. This
way, proxies can still provide their functionality. According to it, and taking
into account this work focuses on the establishment of security associations in
IoT infrastructures, we have included EDHOC as part of our proposal in order
to enable secure communications. However, the EDHOC specification [4] does
not define any mechanism to establish the authentication credentials that are
required to perform the protocol exchange. For this previous step, we propose
the use of LO-CoAP-EAP, which is further described below.

3.2. LO-CoAP-EAP

LO-CoAP-EAP (Low Overhead CoAP-EAP) [8] is a bootstrapping service
that is implemented by CoAP as EAP lower layer protocol. Indeed, LO-COAP-
EAP is built on three pillars: CoAP [9], EAP [43] and AAA [11]. These tech-
nologies provide a unique set of properties to LO-COAP-EAP. On the one hand,
because it is built on top of CoAP, LO-CoAP-EAP provides a seamless inte-
gration of a smart object’s bootstrapping process as a CoAP service. It also
provides a link-layer independent solution since CoAP runs on top of UDP/IP.
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Furthermore, CoAP is the standard protocol for web transfer between IoT de-
vices; consequently, unlike PANA-based proposals, LO-CoAP-EAP does not
require to add any specific technology, so devices’ burden can be alleviated. On
the other hand, With EAP, LO-COAP-EAP provides a flexible approach by
enabling a wide variety of authentication methods to be chosen according to
the needs of the IoT deployment, or the organizations’ policies involved on it.

Bootstrapping an IoT device with LO-CoAP-EAP also provides the neces-
sary key material, so that the device can be integrated as a trustworthy entity
in the domain. Towards this end, such key material is derived according to the
EAP Key Management Framework [10]. The EAP KMF allows the derivation of
key material that is used for different purposes, depending on the protocol; for
instance, IEEE 802.15.9 uses EAP carried over PANA to derive key material to
protect the link-layer [44]. Furthermore, it can be also used to generate the key
material needed to run different Security Association Protocols (SAP) [39, 8]. In
the context of a heterogeneous IoT, with different radio technologies and severe
resource constraints, in this work we use LO-CoAP-EAP to derive the required
cryptographic material to establish an EDHOC security association. Finally,
the use of an AAA infrastructure provides advanced features such as identity
federation, in order to make multi-domain deployments more scalable.

LO-CoAP-EAP has been designed to cope with constrained devices and Low
power and Lossy Networks (LLNs), providing a solution to bootstrap a wide
variety of IoT devices. Based on it, we select this protocol as the bootstrapping
protocol to derive the authentication credentials required by EDHOC. Next
sections provides a detailed description of the resulting approach.

4. Enabling EDHOC through LO-CoAP-EAP

As already described, the EDHOC protocol allows to establish end-to-end
security associations between two IoT endpoints. However, such protocol does
not specify how these entities establish the required credentials for their authen-
tication, that is, the pre-shared key, raw public keys or certificates. According
to it, we propose the usage of LO-CoAP EAP as bootstrapping protocol to
establish such credentials.

4.1. Proposed architecture

Based on the integration of LO-CoAP-EAP and EDHOC, Figure 1 shows
an overview of the proposed architecture, in which we consider three entities:

• Smart Object. It represents an IoT device that aims to join a certain
security domain. The Smart Objects acts as a CoAP-EAP Client and
EDHOC Client to carry out the functionality of LO-CoAP-EAP and ED-
HOC, respectively.

• Controller. It is the entity in charge of managing a network security
domain. The Controller can act as an EDHOC Server for the EDHOC
protocol, as well as CoAP-EAP Server and RADIUS Client for handling
the bootstrapping process through LO-CoAP-EDHOC.
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Figure 1: Proposed architecture and interactions overview

• AAA Server. It represents the AAA server of the Smart Object Identity
Provider (e.g., the manufacturer organization). To realize the correspond-
ing functionality, the AAA Server acts a RADIUS Server.

In order to highlight the advantages provided by AAA, we consider two dif-
ferent domains; on the one hand, the Manufacturing domain is supposed to
represent the domain in which the Smart Object was manufactured. On the
other hand, the Deployment domain represents the domain in which the Smart
Object will be operating after a successful bootstrapping process. As shown
in Section 6, this represents a common scenario in IoT deployments, in which
the use of AAA enables a more scalable approach, since the deployment do-
main does not require any previous knowledge about new devices joining the
domain. Furthermore, Figure 1 also depicts the two main phases identified in
our proposal. On the one hand, the first phase (LO-CoAP-EAP Bootstrapping)
is focused on the bootstrapping process, which aims to provide certain crypto-
graphic material to the Smart Object and Controller. On the other hand, the
second phase consists of the Authentication Credential Establishment by using
the previously obtained cryptographic material, and the Security Association
Establishment by the EDHOC protocol.

During the bootstrapping with LO-CoAP-EAP, the Smart Object is au-
thenticated and joins the deployment domain as a trustworthy entity. As a
consequence of the bootstrapping process, key material is derived that is used,
among other things, to establish a security association (SA) with the Controller.
The Controller handles the authentication by interacting with the AAA Server.
This entity authenticates the Smart Object and notifies the Controller when
the authentication is completed correctly. The AAA Server sends authorization
information about the Smart Object to the Controller. The communication
between the Smart Object and AAA Server is done through EAP. However, it
should be noted that the transport of EAP messages between the AAA Server
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and the Controller is done through an AAA protocol (RADIUS in this case),
and LO-CoAP-EAP in the case of the communication between the Smart Object
and the Controller.

When the LO-CoAP-EAP Bootstrapping phase is successfully finished, both
entities initiate the Authentication Credential Establishment process. Towards
this end, the Smart Object and the Controller make use of cryptographic ma-
terial obtained from such previous phase. As described in Section 5, depending
on the authentication mode (i.e., PSK, RPK, or certificates), the required op-
erations and interactions will differ. Once the corresponding credentials are
established, the Smart Object (acting as EDHOC Client) and the Controller
(acting as the EDHOC Server) start the Security Association Establishment.
Then, these entities are able to compute a shared symmetric key, which could
be used to enable other security solutions intended to protect future communi-
cations between the Smart Object and the Controller (e.g., OSCORE [22]).

4.2. Key management and security associations update

According to the proposed architecture (Figure 1), we consider the LO-
CoAP-EAP bootstrapping protocol as enabler of the EDHOC protocol. Partic-
ularly, when EDHOC authentication is based on a symmetric key pre-shared be-
tween the Smart Object and the Controller, both entities carry out a key deriva-
tion process that employs cryptographic material obtained from LO-CoAP-EAP
to compute such pre-shared key. In case of authentication based on asymmet-
ric keys (i.e., raw public keys or certificates), both entities previously require
exchange their corresponding public parts. Towards this end, they make use
of cryptographic material gained from the LO-CoAP-EAP bootstrapping to
authenticate such exchange. It should be pointed out that, unlike authenti-
cation with symmetric keys, in this case the Controller could release public
keys associated to different Smart Objects that are within the same domain, so
that they are able to directly establish security associations each other, without
Controller’s participation. Such operation mode is out of scope of this work,
although it represents part of our future work.

Moreover, the bootstrapping and the authorization credential establishment
processes are only performed once, specifically when such Smart Object need
to join the Deployment domain. At this point, every time the Smart Object
and the Controller require to establish a new security association or update a
previous one, both entities only need to launch the EDHOC protocol, rather
than starting all bootstrapping process again. This way, network overhead is
reduced, as well as the PFS property is also assured due to the use of ephemeral
cryptographic material in EDHOC. Note that employing EDHOC as security
associations updating mechanism has been proposed in our previous work for
LoRaWAN networks [45].

4.3. Transporting EDHOC messages

In order to transport EDHOC messages between the Smart Object and the
Controller, an application protocol is required. In this sense, we have selected
the CoAP [9] protocol by considering different aspects:
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• CoAP is proposed by the IETF as the standard application layer protocol
for IoT scenarios.

• The EDHOC specification (version 8) [4] suggests the usage of CoAP to
transport the EDHOC messages, which are embedded as payload of the
corresponding CoAP request/response.

• The bootstrapping protocol of our proposal (i.e., LO-CoAP-EAP) employs
CoAP as application protocol. Therefore, by also using this protocol for
transporting EDHOC messages, Smart Objects’ burden is alleviated.

According to it, Figure 2 shows an overview of the EDHOC three-message
exchange over CoAP between the Smart Object (EDHOC client) and the Con-
troller (EDHOC server). Nevertheless, it should be pointed out that other
application protocols can be adopted to carry out such exchange. Particularly,
the Message-1 is included in a CoAP POST request, which is sent by the Smart
Object to start EDHOC. Note that this EDHOC message includes the Smart
Object’s ephemeral public key. Regarding the Message 2, it is contained in a
CoAP ACK (2.04 Changed), which is sent by the Controller. Similarly to the
first message, the Message-2 contains the Controller’s ephemeral public key.
Finally, the Message-3 is again included in a new CoAP POST request, which
is sent by the Smart Object to conclude the EDHOC message exchange. At this
point, both entities are able to compute a shared symmetric key by employing
the exchanged ephemeral keys, as detailed in Section 5.

5. Interactions description

According to the proposed architecture, in this section we delve and describe
the interactions defined in our proposal between the Smart Object and the
Controller in order to establish a security association.

5.1. LO-CoAP-EAP bootstrapping interactions

Prior to running EHDOC, the bootstrapping with LO-CoAP-EAP has to be
completed successfully. Once the Smart Object becomes a trustworthy party in
the domain, it can start its normal operation. This normal operation can involve
running a security association mechanism to secure the communications associ-
ated with a specific service. To provide credentials for launching EDHOC, we
use the LO-CoAP-EAP protocol. The process of establishing authorization cre-
dentials depends on the EDHOC authentication mode, that is, with symmetric
keys or asymmetric keys.

In this section we summarize the LO-CoAP-EAP message flow of operation.
In the first step, the Smart Object sends an initial message to the Controller
to signal that it is present and ready to start the bootstrapping process. This
message contains the identity of the Smart Object.

After this first “trigger” message, the Controller initiate the EAP exchange
with the AAA Server, sending the identity of the Smart Object received in the
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Figure 2: EDHOC three-message exchange over CoAP

previous message. Then, the EAP method, chosen by the AAA, starts between
the Smart Object and the AAA, acting the Controller as a forwarder of these
messages. When the EAP method has finished correctly and the Smart Object
is successfully authenticated, the AAA Server sends the EAP success message to
the Controller along with the MSK. The Controller then, is able to derive Tran-
sient Session Keys (TSKs) to establish a security association at the EAP lower
layer level to secure the LO-COAP-EAP traffic between the Smart Object and
the Controller. In this last exchange, there is a key named COAP PSK, that is
derived from the MSK and nonces exchanged in LO-CoAP-EAP, which are used
to establish a security association (SA) between the Controller and the Smart
Object. The SA is established when the EAP success and its acknowledgement
are exchanged and correctly verified. These two message contain a CoAP option
called AUTH option, that contains the HMAC of the entire message, providing
integrity and authentication to the messages. This AUTH option is generated
by the COAP PSK, a 16-byte key that is computed with AES-CMAC-PRF-128
[46] as Key Derivation Function (KDF), which, in turn, uses AES-CMAC-128
[47]. Both primitives use AES-128 [48]. COAP PSK is generated as:

COAP PSK = KDF(MSK, “IETF COAP PSK” || nonce-c || nonce-s, 64, length)

where MSK is the key derived from the EAP method, ”IETF COAP PSK” is
the non-NULL ASCII string without quotation marks; nonce-s and nonce-c are
the nonces exchanged in the LO-COAP-EAP protocol; 64 is the length of the
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Figure 3: LO-COAP-EAP bootstrapping interactions to establish a MSK between the Smart
Object and the Controller

MSK; length is the length of the nonces plus the ASCII string.
With this COAP PSK we generate the AUTH Option as shown:

AUTH Option value = AES-CMAC-128(COAP PSK, message, length)

Where message is the entire CoAP message to protect, including the AUTH
Option, and length is the length of the message.

5.2. EDHOC key exchange interactions

Once the LO-CoAP-EAP bootstrapping has successfully finished and the
Smart Object and Controller are in possession of the MSK, both entities ini-
tiate the authentication credential establishment process in order to enable the
EDHOC protocol. According to it, the EDHOC three-message exchange de-
pends on the selected authentication mode, that is, with symmetric keys (PSKs)
or asymmetric keys (RPKs or certificates), as already mentioned. It should be
pointed that we have not considered certificates-based authentication in this
work since its corresponding EDHOC message exchange is similar to that em-
ployed with authentication based on RPKs.

5.2.1. Message exchange with PSK-based authentication

In case of EDHOC with PSK-based authentication, the Smart Object and
the Controller make use of a key derivation function for generating the corre-
sponding pre-shared key (PSK) from the MSK, as shown in Figure 4 (Authen-
tication Credential Establishment). Particularly, we select the prf+ function
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that is defined in [49] and recommended in [50]. It should be noted that such
function employs the AES-CMAC-PRF-128 algorithm.

PSK = prf+(MSK, “IETF-EDHOC-PSK” | NULL | NSO | NC , 64, 128)

According to this equation, the next parameters are required:

• MSK is the master session key from the LO-CoAP-EAP bootstrapping.

• An ASCII value formed by the concatenation of:

– “IETF-EDHOC-PSK” represents a string identifying the protocol
that will employ the derived key.

– NULL is a null value.

– NonceSO is a random nonce for the Smart Object.

– NonceC is a random nonce for the Controller.

• 64 indicates the MSK’s length (in bytes).

• 16 indicates the PSK’s length (in bytes).

When the Smart Object and the Controller derive and share the PSK, both
entities are able to start the EDHOC three-message exchange, as shown in Fig-
ure 4 (EDHOC message exchange). It should be pointed out that such exchange
between the Smart Object and the Controller employs the CoAP protocol to
transport the corresponding messages, as already mentioned.

In order to launch the EDHOC protocol, the Smart Object firstly generate
its own ephemeral key pair (i.e., E SKSO and E PKSO) and then, it builds the
Message-1. This message contains the following parameters:

• MSG TY PE identifies the EDHOC Message-1.

• SSO is a variable length session identifier for the Smart Object.

• NSO is a 64-bit random nonce for the Smart Object.

• E PKSO represents the Smart Object’s ephemeral public key.

• ECDH−Curves indicates the set of elliptic curves for the Diffie-Hellman
algorithm supported by the Smart Object.

• HKDFs states the set of key derivation functions supported by the Smart
Object.

• AEADs indicates the set of algorithms for authenticated encryption with
associated data supported by the smart object.

• PSK ID is a unique identifier associated to the PSK.
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Figure 4: EDHOC message exchange with PSK-based authentication between the Smart
Object and the Controller

Then, the Smart Object embeds the Message-1 in a CoAP request and sends it
to the Controller.

When the Controller receives the request, this entity extracts Message-1
and verifies that it supports, at least, one of each set of algorithms supported
by the Smart Object. If so, the Controller generate its own ephemeral key pair
(i.e., E SKC and E PKC) and computes the Secret with the Diffie-Hellman
algorithm as:

Secret = ecdhe(E SKC , E PKSO)

Additionally, the Controller builds the Message-2 by including the next param-
eters:

• MSG TY PE identifies the EDHOC Message-2.

• SSO is the Smart Object’s session identifier.
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• SC is a variable length session identifier for the Controller.

• NC is a 64-bit random nonce for the Controller.

• E PKC represents the Controller’s ephemeral public key.

• HKDF states the selected key derivation function.

• AEAD indicates the selected algorithm for authenticated encryption.

• COSE ENCC is a COSE Encrypt0 object encrypted by the AEAD algo-
rithm, the PSK and the Secret. Note that, as mentioned in the COSE and
EDHOC specifications [6, 4], the COSE ENCC allows to authenticate the
Controller, as well as protect the Message-1 and Message-2 integrity.

Then, the Controller sends this message in a CoAP response to the requesting
Smart Object.

Upon receiving the Message-2, the Smart Object is able to compute the
Secret similarly to the Controller as:

Secret = ecdhe(E SKSO, E PKC)

Subsequently, it decodes this second message and tries to decrypt the COSE ENCC

object by using the AEAD algorithm, the PSK and the just-computed Secret.
If this decryption operation is successful, the Smart Object builds and sends the
Message-3 in a CoAP request to the corresponding Controller. Such message
contains these parameters:

• MSG TY PE identifies the EDHOC Message-3.

• SC is the Controller’s session identifier.

• COSE ENCSO is a new COSE Encrypt0 object encrypted similarly to
the COSE ENCC , so that the COSE ENCSO allows to authenticate the
smart object, as well as protect integrity of all exchanged messages.

Finally, once the Controller obtains the third message, it tries to decrypt
the COSE ENC SO by employing the AEAD, the PSK and the Secret and,
if such operation is successful, the EDHOC three-message exchange finishes. At
this point, both entities are able to compute a shared symmetric key (SymKey)
by using the HKDF with the following parameters:

• Secret includes the results of the Diffie-Hellman algorithm.

• Context(“EDHOC-SymKey”, exchange hash, 128) is a COSE KDF CONTEXT
structure ([6, 4]) defined as follows:

– “EDHOC-SymKey” specifies the algorithm for which the SymKey
will be used.

– exchange hash includes a hash of all exchanged messages:
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exchange hash = hash(hash(Message-1 | Message-2) | Message-3))

– 128 indicates the length of the SymKey (in bits). By considering the
NIST recommendation [51], we establish this value to 128-bit length
in order to ensure a proper security level to subsequent communica-
tions.

It should be pointed out that the Smart Object and the Controller could
employ this SymKey at any layer to enable other security protocols (i.e., OS-
CORE [22] or IPsec [52]), thus allowing them to protect future communications
between them.

5.2.2. Message exchange with RPK-based authentication

Before running the EDHOC with authentication based on RPKs, both public
keys must be securely exchanged between the Smart Object and the Controller
during the Authentication Credential Establishment. This exchange is done on
LO-CoAP-EAP, when the bootstrapping is completed. To exchange their RPKs,
the Smart Object firstly generates its own key pair, and sending the public
part to the Controller. This is done by using a new service associated with
the Controller, called RPK Exchange. Then, the Smart Object sends a CoAP
POST message to such service (Uri-Path CoAP header: /rpk) by including
the corresponding RPK. Note that this CoAP message is protected with the
AUTH option. When the Controller receives this message, it knows the identity
of the Smart Object, so it stores this public key associating it to the Smart
Object. After this, the Controller sends it public part to the Smart Object in
the corresponding CoAP response, which is also secured with the AUTH option.

After this process, the Smart Object have the Controller’s raw public (RPKC),
while the Controller have the Smart Object’s raw public key (RPKSO).

Furthermore, it should be pointed out that the corresponding three-message
exchange (Figure 5, EDHOC protocol sub-phase) is similar to that employed
with PSK-based authentication. Nevertheless, there are differences with re-
spect to some parameters included in the exchanged messages. Particularly, the
Message-1 does not contain the PSKID due to the usage of RPKs for authen-
tication. Instead, such message includes the following parameters:

• SIGSs represents the set of algorithms for signing supported by the Smart
Object.

• SIGV s states the set of algorithms for signature verification supported
by the Smart Object.

Regarding the Message-2, it further contains two new parameters:

• SIGS states the selected algorithm for the Smart Object’s signature.

• SIGV indicates the selected algorithm for the signature verification by
the smart Object.
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Figure 5: EDHOC message exchange with RPK-based authentication between the Smart
Object and the Controller

Additionally, the COSE ENCC is now encrypted by using only the AEAD al-
gorithm and the Secret. This way, while this object protects the Message-1 and
Message-2 integrity, the Controller is authenticated through the COSE SIGC .
It is a COSE Sign1 object signed by using the SIGV and the corresponding
SKC . In addition, the COSE SIGC is included as part of the COSE ENCC
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object, as indicated in the EDHOC specification.
Finally, concerning the Message-3, note that the COSE ENCSO is also

encrypted by employing only the AEAD and the Secret, so the Smart Ob-
ject’s authentication is provided through the COSE SIGSO. In this case, such
COSE Sign1 object is signed by using the SIGS and the corresponding SKSO.
In addition, it is contained in the the COSE ENCSO, similar to the Message-2.

At this point, as with the PSK-based authentication case, once the EDHOC
message exchange successfully finishes, both entities may compute the shared
symmetric key (SymKey) by using the HKDF function with the parameters
previously described.

This section focuses on describing the required interactions between the
Smart Object and the Controller to establish a security association that allows
them to protect their subsequent communications. Towards this end, they make
use of the EDHOC protocol with authentication based on either PSKs or RPKs,
where the corresponding credentials are derived from certain cryptographic ma-
terial obtained by the LO-CoAP-EAP bootstrapping protocol According to it,
next section describes a real use case, in which our proposal has been deployed.

6. Use case of Building Automation

Building automation (BA) is a useful environment to show the importance
of the proposed security architecture. In this environment, smart objects are de-
ployed to collect critical building information that must be transmitted to allow
data-driven applications to perform automatic operations for energy efficiency,
security alarms, control access and so on.

In particular, the scenario considered is a real building called Technology
Transfer Center located in University of Murcia (Spain). The ground floor of
this building is shown in figure 6 where several laboratories are presented on the
lower part of the map. This screen-shot has been obtained from the SCADA-
web platform for the BA system of the building. The SCADA-web enables to
establish automatic operations according to collected data from the building
equipment.

To collect data, smart objects have been deployed to control temperature,
lighting, presence, power consumption, etc. The high variety of equipment
deployed is shown in figure 7. The smart objects act as data sources providing
critical information related to the building. Moreover, the smart objects enable
the data transmission to the BA system using standardized Internet protocol
(i.e. COAP). All collected information from smart objects is finally provided to
users/administrators through a SCADA-web platform deployed in the cloud.

However, such critical data can be compromised by cyber-attacks if security
technologies are not implemented. For this reason, the building automation sce-
nario is considered for the application of the proposed architecture incorporating
a set of components to enable the secure data exchange between smart objects
and the SCADA-web platform. To achieve that, the proposed architecture im-
plements smart technologies such as secure bootstrapping and key-establishment
process.
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Figure 6: View of the ground floor of the testbed building.

Figure 7: Equipment in the laboratories of the building automation testbed.

Now we describe the secure process by which a smart object is deployed,
bootstrapped and joined to the security domain. This process finishes with
the creation of a security association using EDHOC to enable the secure data
communication. This secure process for BA system is shown in figure 8 where
different smart objects with a wireless communication through a 6LoWPAN
Border Router must be deployed. First, each smart object has to be authen-
ticated in the network before sending any data traffic. To do that, each smart
object starts the LO-CoAP-EAP bootstrapping with the IoT Controller (step
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Figure 8: General overview of the use case

1.a). If the smart object is from the local organization, it will only contact the
local AAA server (step 1.b) (for which we used a RADIUS implementation in
this case), but if it is from an external organization it will have to go to the
global AAA server of smart object’s organization (step 1.c), as explained in our
previous works [39, 8]. After the bootstrapping is completed, the smart object
and the IoT Controller obtain the necessary key material as explained in Section
5 in order to establish further security associations (SAs). Finished the boot-
strapping, the smart object starts the EDHOC protocol (step 3.a) to establish a
security association with the IoT controller. Then, the smart object can perform
secure data exchange with the IoT Controller also enabling the EDHOC key re-
freshment. The data exchange between the IoT Controller to the SCADA-web
is also secured by HTTP over SSL (HTTPS) because these components have
high computing resources to manage HTTPS data communications.

Once this information is available in the SCADA-web, the building admin-
istrator is able to analyze and monitor the information, such as energy use, and
establish the proper automatic operations in the SCADA-web. For instance,
the SCADA-web can optimize the power consumption by making decisions such
as turning on/off the lights or HVAC depending on the temperature and users
presence in a certain room. In case of fire detectors’ data, the building adminis-
trator is responsible for managing a potential critical situation based on received
data from SCADA-web application through secure HTTPS interface for mobile
devices such as laptop, tablet or smartphone.

In this use case, the IoT controller represents the main enabler of secure
data communications within the building and the SCADA-web is the brain of
the data processing and automatic decision generation according to the collected
data and end-user configurations.

Next section provides a detailed evaluation of the proposed architecture and
its smart technologies using real devices of this building scenario.
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7. Evaluation and Performance Analysis

This section aims to provide a performance evaluation of our proposal by
comparing different configuration for each phase, that is, the Bootstrapping, Au-
thentication Credential Establishment and Security Association Establishment
phases. Towards this end, we consider relevant practical aspects, such as mes-
sage size and runtime.

7.1. Testbed

We have employed real devices to deploy the Smart Object and Controller
entities for the different tests. Specifically, the Controller has been deployed on
an Intel Core i5 with 2.7 GHz and 4 GB RAM. In addition, it is enabled to accept
IPv6 connections. Similarly, we have deployed the Smart Object on a device that
includes two hardware components, specifically, a MSP430F5419A-EP mote and
a PIC32MX795F512L. The former is employed to enable 6LoWPAN connections
and managing both LO-CoAP-EAP and PANA messages, while the later is
in charge of performing public key operations specified by EDHOC, such as
the Diffie-Hellman algorithm. It should be pointed out that the mote and the
PIC32 communicate each other through a USART serial port in order to support
all functionality of the Smart Object, that is, LO-CoAP-EAP/PANA client
and EDHOC client. Regarding the main features of these components, the
MSP430F5419A-EP has a frequency of 25 Mhz, 128 KB ROM and 16 KB RAM,
and the PIC32MX795F512L presents a frequency of 80 MHz, 512 KB ROM
and 128 KB RAM. Additionally, we have also employed an intermediate entity
acting as a 6LoWPAN Border Router (6LBR). Its aim is only to route packets
between the 6LoWPAN network and the IPv6 network, so the 6LBR is agnostic
to messages exchanged between the Smart Object and the Controller. This
entity has been deployed on another MSP430F5419A-EP mote.

Once we have specified the main features of real devices employed to per-
form the performance tests, we provide the evaluation of our proposal taking
into account message size and runtime with different configurations, as already
stated. Particularly, the LO-CoAP-EAP and PANA2 protocols are tested for
the Bootstrapping phase. It should be pointed out that we have considered
PANA in such phase due to it is widely proposed as bootstrapping mechanisms
in IoT deployments ([44, 34]). Additionally, these protocols are also employed
and compared for the Authentication Credential Establishment phase. Finally,
EDHOC with authentication based on both pre-shared keys and raw public keys
is considered for Security Association Establishment phase. In this case, note
that the EDHOC implementation employs the GitHub project pointed out in
the COSE specification3 to manage the corresponding COSE objects, which, in
turn, specifies a particular implementation of CBOR representation4.

2https://sourceforge.net/projects/panatiki/
3https://github.com/cose-wg/COSE-C
4https://github.com/cabo/cn-cbor
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Table 1: Length of messages exchanged in each phase

Phase Protocol Message Length

Bootstrapping

LO-CoAP-EAP

POST 29
POST/EAP-PSK1 36
ACK/EAP-PSK2 69
POST/EAP-PSK3 68
POST/EAP-PSK4 48
POST/EAP-Success 38
ACK 23

Total 311

PANA

PCI 16
PAR 40
PAN 40
PAR Req/Id 48
PAN Rep/Id 60
PAR EAP-PSK1 56
PAN EAP-PSK2 84
PAR EAP-PSK3 84
PAN EAP-PSK4 68
PAR EAP-Success 88
PAN 52

Total 636

Authentication Credential
Establishment

LO-CoAP-EAP
POST 91
ACK 89

Total 180

PANA
PNR 112
PNA 112

Total 224

Security Association
Establishment

CoAP
(EDHOC-PSK)

Message-1 84
Message-2 99
Message-3 42

Total 225

CoAP
(EDHOC-RPK)

Message-1 86
Message-2 211
Message-3 152

Total 449

7.2. Message Size

Message size is a crucial aspect to be considered in IoT deployments due to
the typical limitations related to network bandwidth and resources of involved
devices in this type of scenarios. In this sense, Table 1 details the size of each
message for a specific protocol, which is considered as potential alternative to
fulfill with the corresponding functionality of certain phase. According to the
results, the total size of all messages required by LO-CoAP-EAP is 51% lower
than by PANA when these protocols are employed in the Bootstrapping phase.
In addition, PANA require 4 more messages to be exchanged in comparison with
LO-CoAP-EAP. Note that the authentication mode employed in both cases is
EAP-PSK, as already mentioned. Similarly, when LO-CoAP-EAP and PANA
are considered in the Authentication Credential Establishment phase, the total
size of all messages is 20% lower with the former. Regarding the last phase
(Security Association Establishment), the total messages size is 50% lower when
EDHOC authentication is based on PSK. However, it should be pointed out that
the usage of RPKs in EDHOC would facilitate the establishments of security
associations between Smart Objects, as previously stated.

Furthermore, Figure 9 shows a message size comparison among all poten-
tial configurations, that is, our proposal (LO-CoAP-EAP and EDHOC with
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Figure 9: Total length of all messages exchanged with different configurations

authentication based on PSK or RPKs) against PANA and EDHOC with PSK-
based and RPK-based authentication. Results show that the total size of all
message exchanged is 34% lower with LO-CoAP-EAP than with PANA when
EDHOC authentication is performed with PSK, while it is 28% less in case of
employing RPKs. According to it, it should be pointed out that this reduction
of the total size of all messages achieved by our solution is specially relevant
in IoT scenarios where network presents a limited bandwidth or is made up by
resource-constrained devices.

7.3. Runtime

Another aspect to be considered for evaluation purposes is the runtime spent
by the different configurations, which is shown in Figure 10. It should be pointed
out that we have performed 10 executions of each configuration, so that results
indicate the average value of the runtime of such executions. Additionally, we
also include 95% confidence intervals in order to represent the runtime variation
in each case. By considering the obtained results, we find the average runtime
taken by our proposal to establish a security association with PSK-based au-
thentication (Phase 1: 1509 ms + Phase 2: 6 ms + Phase 3: 1282 ms) is 11%
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Figure 10: Runtime to establish a security association by using each configurations (Smart
Object side)

lower than by PANA and EDHOC with such authentication mode (1842 ms +
6 ms + 1282 ms). Similarly, when RPKs are employed, LO-CoAP-EAP and
EDHOC (1509 ms + 730 ms + 2001 ms) takes 16% lower than PANA and ED-
HOC (1842 ms + 1215 ms + 2001 ms). These results are a direct consequence
of the shorter size of LO-CoAP-EAP messages compared to PANA messages
(see Table 1).

In this section, we have compared different configurations in order to es-
tablish security associations by considering certain relevant aspects, specifi-
cally, message size and runtime. To this end, we have employed real resource-
constrained devices in order to evaluate their performance in typical IoT scenar-
ios. Additionally, we have also tested another widely employed bootstrapping
protocol, PANA, as potential enabler of EDHOC. The results demonstrate that
our proposal, which integrates LO-CoAP-EAP and EDHOC, is a feasible so-
lution to be applied in IoT deployments, with the aim to establish different
security associations between Smart Objects and Controllers.
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8. Conclusions

Key management represents a crucial aspect to build more secure IoT-
enabled scenarios. Toward this end, this work proposed an integrative approach
to manage the lifecycle of cryptographic material, which is employed to estab-
lish security associations between two endpoints. In particular, we proposed the
integration of the LO-CoAP-EAP bootstrapping protocol as an enabler of the
EDHOC protocol, by considering different authentication modes. To accom-
plish this, we extended LO-CoAP-EAP to derive cryptographic material that is
employed by EDHOC to establish a security association between two endpoints.
The resulting approach is intended to leverage the advantages provided by re-
cent standards and technologies, in terms of lightness and flexibility. Indeed,
it should be noted that this approach represents the integration of two IETF
standardization efforts in the scope of the ACE WG. Furthermore, the solution
was deployed and evaluated on real hardware devices as part of the proposed
Building Automation use case. Finally, we provide a performance evaluation
by employing different configurations, and considering other protocols widely
used in IoT scenarios, such as PANA. The results show that our proposal is a
feasible solution to be applied in IoT scenarios, in order to establish security
associations between two endpoints. As future work, we will focus on the in-
tegration with different compression mechanisms at different layer to further
reduce the message overhead, as well as the use of OSCORE, in order to build
an integrative application-layer security approach for the IoT.
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