
Anomaly-Based Intrusion Detection System for
Embedded Devices on Internet

Deepak Mehta, Alie El-Din Mady, and Menouer Boubekeur

United Technologies Research Center
Cork, Ireland

Email: {mehtad,madyaa,boubekm}@utrc.utc.com

Devu Manikantan Shila

United Technologies Research Center
East Hartford, Connecticut

Email: manikad@utrc.utc.com

Abstract—Embedded devices connected to the Internet rang-
ing from garage door openers, home thermostats, home au-
tomation systems to automobiles, are continuously exploited
by remote attack vectors. According to OWASP Internet of
Things project, these vulnerabilities are due to insecure web
interfaces, insufficient authentication and authorization, insuffi-
cient transport layer protection, broken cryptography, insecure
software/firmware updates, or poor physical security. As opposed
to PowerPC systems, embedded devices lack resources to run
advanced attack detection or anti-virus softwares. Moreover,
embedded devices are often mass produced (thousand to millions)
and share a static security footprint. Hence, a successful attack
on a single device can be replicated across other devices with
minimal effort. There exists a significant need towards developing
a resilient cyber security methodology that provides scalable and
efficient intrusion detection and resilient architecture. In this paper,
we present an efficient hierarchical anomaly-based intrusion
detection method and resilient policy framework that enables the
system to detect suspicious activity and continue the operation
with minimum functionality.

Keywords–Cyber Security; Embedded devices; Internet of
Things; Intrusion Detection; Resilient policy;

I. INTRODUCTION

The continued rise of cyber attacks together with the evolv-
ing skills of the attackers, and inefficiency of the traditional
security algorithms employed by the embedded devices to
defend against advanced and sophisticated attacks, necessitate
the development of novel defense and resilient techniques.
Targeted aggressive attacks use well-researched and well-
funded multi-vector tactics to introduce stealthy and persistent
malware in connected embedded systems (i.e., Internet of
Things) infrastructure systems. Examples include ThingBot,
Ransomware [3]-[5], etc. The insecure composition of legacy
devices with web interfaces (such as HTTP, PHP, etc.) [3]
further enlarges the attack surfaces of these systems. Fur-
thermore, vulnerabilities for embedded devices are discovered
daily, which can be easily replicated to many other devices
connected to the Internet. These factors highlight the impor-
tance of designing a scalable detection scheme that not only
detect attacks but also minimize the attack impact and prevent
spreading of attack over other similar embedded devices.

A handful of approaches exist along the tangents of attack
detection for large scale systems and resilient algorithms for
enabling minimal system services even under attack [6], [7],
[8], [9], [10]. However, these approaches require high com-
putational resources, which make it infeasible for embedded

devices with limited resources. In addition, these approaches
rely on operational data of the system, which in turn limits the
ability to detect a wide variety of attacks.

This paper proposes an Intrusion Detection and Resilient
Policy methodology for embedded devices connected to the
Internet. In order to assist the development of the proposed
approach, we have summarized various attack models for
Internet connected embedded systems. This work aims to
extend our preliminary proposal [1]. The paper is organized as
follows: In Section II we first describe the overall methodology
of hierarchical based intrusion detection and resilient policy for
detection. In Section III we describe the details of our approach
for anomaly-based intrusion detection system for embedded
devices on internet. In Section IV we evaluate the developed
methodology. Finally, in Section V we present conclusions and
future work.

II. CYBER-PHYSICAL ATTACKS, DETECTION AND
MITIGATION

A. Adversary models
We consider several different broad strategies an attacker

may employ against Internet facing embedded devices [11]: a)
circumvention attack finds exploits that does not depend on the
security properties of the embedded device; b) deputy attack
finds a way to exploit the vulnerabilities of a benign program
in a malicious way; c) brute force attack attempts all possible
cyber security keys until an exploit is found that succeeds;
d) dictionary attack tries only some key space possibilities
which are deemed most likely to succeed; e) probing attack
uses probe packets to learn properties of the security method
execution needed to construct an attack; f) denial of service
attempts to make the IoT device unavailable; g) backdoor
attack uses hardcoded credentials or passwords to gain access
to the system; h) code injection or reuse attack uses vulnerable
programs or coding errors to inject malicious code into the
device.

B. Hierarchical based Intrusion Detection
This approach considers two level of Intrusion Detection

System (IDS), as shown in Figure 1: local IDS and supervisory
IDS. The local IDS is deployed on every embedded device,
which uses various information, such as power consumption,
memory usage and environmental data to learn and build a
time series based statistical model. The resulting statistical
model is used to detect any anomalous behaviors at the device
layer and the anomalous findings are further reported to the



supervisory IDS for decision making. The supervisory IDS,
deployed at the gateway, learns and builds a data correlation
model that captures the dependencies between all connected
devices during the deployment phase (we assume normal
operational behavior during the period of installation). When
an anomaly is reported from the local IDS, the supervisory
IDS uses the data correlation model to confirm the intrusion
based on other devices behavior (e.g., the behavior of other
correlated devices will not change when the device is attacked,
which is used as an evidence). In order to prevent supervisory
IDS from detecting attacks, an attacker has to learn the group
of correlated devices and tamper them accordingly, which is
a complex task. In the event of an attack, supervisory IDS
will apply a resilient policy to: a) thwart attacks on other
similar devices by trigerring a change in the configuration of
the devices; b) isolates the attacked devices and continues to
provide the same services via use of virtual sensors. In this
paper we will focus on supervisory intrusion detection.

Figure 1. Hierarchical based Intrusion Detection

C. Resilient Policy
The supervisory IDS applies a resilient policy to initially

isolate the attacked device from other devices. The supervisory
IDS uses a combination of the data correlation model and
the local statistical model to build a virtual sensor [10]. This
virtual sensor uses prediction algorithms, such as Kalman
Filtering to predict the actuation values supplied by the at-
tacked device, and deliver the same services (e.g., actuation
values) without the help of the attacked device. Moreover, the
supervisory IDS also triggers a change in system configuration
(e.g., a defense depending on the attack detected) to the
correlated devices to prevent spreading of attack to other
devices.

III. SUPERVISORY INTRUSION DETECTION

The core function of any IDS is to gather and analyse in-
formation in order to identify any intrusion. When the context
is cyber-physical system or Internet of Things, IDS should not
only monitor cyber-related metrics (e.g., network activity, CPU
speed, log files) but also physical processes/measurements
that govern behaviour of physical devices. IoT or sensor data
consists of a continuous stream of data (aka time-series) where
the time interval between successive updates could vary from
milliseconds to minutes. The data produced, usually pertains

to the information about the physical state of a system, i.e.,
temperature, pressure, voltage, power consumption, flow rate,
speed, acceleration, etc. The goal is to detect intrusion not
only in cyber space but also in physical space. For example,
the data reported by an IoT sensor could be far from its normal
behaviour or an actuator could behaves in a highly erratic
manner.

The existing intrusion detection techniques can be broadly
classified into two categories: knowledge-based and anomaly-
based [12].

• A knowledge-based IDS uses a database of pat-
terns/signatures (a footprint specified in terms of data
packets, number of failed attempts, upper and lower
bounds physical measurements etc.) of previously
known attacks and system vulnerabilities. Periodically,
the current signature is checked with the database to
identify and prevent the same attacks in the future.
The advantages of knowledge-based intrusion detec-
tion system is that it is highly affective towards well
known attacks and has low false positive rate. The
disadvantages are that it cannot identify new attacks
and the database would need frequent updates.

• The anomaly-based [13] intrusion detection system
builds a profile (or a data-model) of the normal
behaviour using either statistical or unsupervised ma-
chine learning methods. It then uses the normal profile
to flag any deviations from that profile as alerts.
The advantages of anomaly-based IDS is that it can
identify new attacks, but the disadvantage is that it is
prone to high false positive rate.

Both approaches have been extensively studied. A reader is
referred to [12] for more details.

In the following sections, we shall describe a novel ap-
proach for supervisory intrusion detection. More precisely, we
will exploit the relationship between a set of given time-series
for detecting anomalies. This could either be used on its own
or and it could be used as an additional feature of another
algorithm to improve its efficiency.

A. Correlation-based Anomaly Detection

Problem Setting. We are given a database of unlabelled n
time series T = {t1, t2, . . . , tn} containing both normal and
anomalous sub-sequences. The assumption is that the majority
of them are normal. The problem is to detect anomalous
subsequence within a given time-series by exploiting a set
of corresponding sub-sequences of other time-series when
possible.

The overall methodology of the proposed anomaly-based
intrusion detection is shown in Figure 2. It first transforms the
input data by aggregation and discretization prior to learning
the model that represents the normal behaviour of the signals.
The parameters of the model are then tuned to improve the
overall performance of the method. We shall now describe
each step in detail.
Transformation: Aggregation and Discretization

The aggregation step transforms a sequence of k consec-
utive values of one (or more) time-series by a representative
value using a chosen aggregation function.



Aggregate Discretize Model Tune Test 

Transform Learn Evaluate 

Offline Phase Online Phase 

Figure 2. Overall Methodology for Anomaly-based Intrusion Detection

Given a training database of n series, Ttrain =
{t1, . . . , tn}, we transform it into n × (n − 1) time-series
denoted by S = {spq|p ≤ n ∧ q ≤ n}. Each time-series
spq is a sequence of values, i.e., 〈spq1 , . . . , s

pq
m−k+1〉, where

each spqi is an aggregation of sub-sequences 〈tpi , . . . , t
p
i+k〉

and 〈tqi , . . . , t
q
i+k〉 with a representative value when sliding

a window of size k by one step at a time. The two sub-
sequences are aggregated using normalised cross-correlation
function (NCC). The cross-correlation function (aka. cross-
covariance function) provides a measure of similarity of two
sub-sequences, which is computed as follows:

spqi = NCC (〈tpi , . . . , t
p
i+k〉, 〈t

q
i , . . . , t

q
i+k〉

=

∑i+k

i
tp
i
×tq

i√∑i+k

i
(tp

i
)2×

∑i+k

i
(tq

i
)2

(1)

The normalized cross-correlation scoring is straightforward to
interpret. It returns a value between +1 and -1 inclusive, where
1 means the two sub-sequences are exactly the same, 0 means
they are very different from each other, and -1 they are exactly
opposite. An example of positive correlation and no correlation
between different pairs of sensors reporting temperatures is
shown in Figure 3. The aggregation function is not restricted

Figure 3. Example: Positive correlation (left) and No correlation (right)
between temperatures readings of sensors

to NCC. Any reasonable function can be used instead.
The next step is the discretization of a given time-series,

where the goal is to transform the time-series from a sequence
of continuous values to a sequence of discrete intervals by
dividing the amplitude range of the input time-series. There are
several ways in which the intervals can be chosen. The simplest
way is to create equal bin size and a more sophisticated ap-
proach is to use clustering. In this paper we have implemented
the former approach. Each interval could be represented by a
unique number or by an alphabet. We introduce a parameter
d to denote the number of discrete intervals. Furthermore,

let αpqi denotes the ith discrete-interval associated with the
transformed time-series spq . Discretization can decrease the
dimensionality of the data and it can increase the efficiency
of the algorithm for anomaly detection. A good overview on
discretization is provided in [14].
Learning Model and Tuning. The goal of this step is to learn
a data-model that captures the normal behaviour and tune the
parameters of the model in order to maximise the detection of
the anomalies while minimising the false positive rate. In the
following, we describe how we generate a model for a given
signal.

Let fpqi denotes the frequency of the discrete-interval αpqi
observed in the time-series spq . We also introduce a param-
eter λ to denote the minimum percentage of non-anomalous
sub-sequences within any time-series. Recall that the initial
assumption was that most of the sub-sequences are normal but
very few might be anomalous. The general idea is to select
a set of discrete intervals that combined together represent
normal portion of the time-series, which should be at least λ
percentage of the m subs-sequences of window-size k within
a time-series.

Let Npq be the set of discrete intervals that are normally
observed within time series spq with respect to the parameter
λ. The subset of the discrete intervals classified as normal, i.e.,
Npq ⊆ {αpq1 , . . . , α

pq
d , is computed as follows:

• The sum of the frequencies of discrete intervals cov-
ered by Npq must be greater than a given threshold,
i.e.,

∑
αpq

j
∈Npq(fpq

j
/m) ≥ λ.

• If the ith discrete interval is classified as normal
(αpqi ⊆ Npq) then any jth interval occurring more
than the ith interval (fpqj ≥ fpqi ) must also be
classified as normal (αpqj ⊆ Npq).

• Minimise the number of discrete intervals classified as
normal subject to the above two constraints.

For a given time-series (signal or sensor), the above step is
repeated with respect to each other signal. The data-model that
captures the normal behaviour of a time-series is encoded as
a Boolean matrix where each row correspond to another time-
series and each column corresponds to a discrete interval. An
example of a Boolean matrix model for a time-series t5 is
shown in Table I. The last 4 columns denote the number of
discrete intervals, i.e., d = 4. Each row corresponds to the set
of discrete intervals that are classified as normal (when the
value is 1) with respect to the qth time-series which belongs
to the set {t1, t2, t3, t4}.

The anomaly score of a given window of a time-series is
computed by first checking whether the correlation associated



TABLE I. AN EXAMPLE OF A BOOLEAN MATRIX MODEL.

(p = 5) q 1 2 3 4
N51 1 1 0 0 1
N52 2 1 0 0 1
N53 3 0 0 1 1
N54 4 0 1 0 0

with the sub-sequence of another time-series falls in a discrete
interval classified as normal. This is done with respect to
each corresponding sub-sequence of other time-series. The
anomaly score of the window is the number of discrete-
intervals associated with other time-series falling in the normal
category. We also introduce anomaly threshold, denoted as φ,
as another parameter. The anomaly score is compared with
the threshold, and if it is greater than the threshold than
the window is classified as anomalous. In the final step, the
following parameters are tuned:

1) The aggregation step introduced the parameter k to
denote the length of the window.

2) The discretization step introduced the parameter d to
denote the number of discrete intervals.

3) The modelling step introduced the parameter λ to
denote the percentage of the number of sub-sequences
assumed to be normal within a time-series.

4) The final parameter is the attack-threshold denoted as
φ.

IV. EVALUATION.
In this section we present preliminary results. For the

evaluation purpose we experimented with two sets of data:

1) The historical data for thermostat temperatures, where
12 sensor data have been used. This data is collected
at the demo-site at Cork Institute of Technology
(CIT), where the demo-site has an energy manage-
ment system controls a small size smart-grid covering
several buildings [2].

2) Real-CPU, memory, and temperature data obtained
from three TI CC3200-LAUNCHXL IoT devices,
considering CPU usage, memory stack size and tem-
perature value. This data was collected from a simple
demo for internet connected thermostat demonstra-
tion. the devices was using WiFi to communicate with
a centralized server to send the temperature values
and receive any actuation instructions.

We divided the data into training data and test data.
Training Parameters. For training purpose we restricted the
values of the parameters as defined before. The size of the
window was restricted to the set {10, 20, 40}. The number
of discrete intervals was chosen from the set {10, 20}. The
maximum percentage of the sequences assumed to be nor-
mal was chosen from the set 80%, 85%, 90%, 95%, 100%.
The attack score threshold was chosen from the set
0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5. During the training phase,
the parameters of the model for representing the normal
behaviour was tuned from the above combination of parameter
space.
Attack Model. To test the performance of our approach
we injected the attack by perturbing the test data, which

relied on three parameters: (1) disturbance magnitude re-
flects the percentage of the amplitude changed in the orig-
inal value. The set of percentage values that were used are
{25%, 20%, 15%, 10%, 5%}. Both increase and decrease was
allowed. (2) attack window size denotes the size of the window
chosen for injecting perturbation. (3) disturbance behaviour
defines whether the changed introduced over a window was
fixed or variable.

The results for the two sets are summarised in the following
confusion matrices:

TABLE II. CONFUSION MATRIX FOR THERMOSTAT SENSORS

detected not detected
intrusion 94.5% 6.5%

no intrusion 7.6% 92.4%

TABLE III. CONFUSION MATRIX FOR TI IOT DEVICES

detected not detected
intrusion 99.8% 0.2%

no intrusion 4.6% 95.4%

The results clearly show that the good performance of the
proposed approach. Most of the attacks that were not detected
were those where the amplitude changes was very close to the
original values. The data for the TI IoT devices had hardly
any noise so any deviation from the normal behaviour was
detected as intrusion, which explains the good performance of
the approach.

V. CONCLUSION

In this paper, we have proposed an Intrusion detection
methodology for IoT embedded devices. The methodology
is based on a hierarchical design in order to distribute the
computational resources over the IoT devices and increase the
methodology scalability. Our approach is based on observing
the devices performance and its correlation to similar devices.
Experimental results shows that the efficiency of the proposed
approach for detecting suspicious activities.

In future we plan to investigate the application of this
technique with more rich dataset in particular related to the
manufacturing domain. Currently we have assumed that the
data is consisting of continuous domains. Therefore, in future
we would like to extend this technique to consider events and
categorical data. Also, There are many variants of our approach
that also deserve future investigation.

ACKNOWLEDGEMENT

The research leading to these results in part has received
funding from the European Unions Horizon 2020 research and
innovation programme under Grant Agreement No. 731558.

REFERENCES
[1] A. Mady, D. Mehta, D. M. Shila, and M. Boubekeur, “Towards resilient

cyber security for embedded devices on internet,” 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT) (2016), pp. 12, Dec. 2016.

[2] V. Valdivia et al., “Sustainable building integrated energy test-bed,”
Power Electronics for Distributed Generation Systems (PEDG), 2014
IEEE 5th International Symposium on, pp. 16, 2010.



[3] S. Haider, D. Manikantan Shila, and M. van Dijk, “Security agents for
embedded intrusion detection,” Circuit Cellar Magazine, Mar. 2015.

[4] B. Donohue, “Beware the thingbot,” www.blog.kaspersky.com, Jan. 2014.
[5] “OWASP Internet of Things project,” www.owasp.org/index.php, 2014.
[6] A. A. Cardenas, P. K. Manadhata, and S. P. Rajan, Big data analytics

for security, IEEE Security & Privacy, pp. 74-76, Dec. 2013.
[7] A. Valdes and K. Skinner, Adaptive, Model-Based Monitoring for Cyber

Attack Detection, Recent Advances in Intrusion Detection Volume 1907
of the series Lecture Notes in Computer Science pp 80-93, 2000.

[8] F. Pasqualetti, F. Dörfler, and F. Bullo, Attack Detection and Identification
in Cyber-Physical Systems–Part I: Models and Fundamental Limitations,
arXiv preprint arXiv:1202.6144, 2012.

[9] H. Fawzi, P. Tabuada, and S. Diggavi, Secure Estimation and Control for
Cyber-Physical Systems Under Adversarial Attacks, Automatic Control,
IEEE Transactions on, pp. 1454-1467, Jan. 2014.

[10] K. Paridari et al., Cyber-Physical-Security Framework for Building
Energy Management System, In 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS), 2016.

[11] D. Evans, A. Nguyen-Tuong, J. Knight, Effectiveness of moving target
defenses, Moving Target Defense, 2011.

[12] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Comput. Surv., vol. 46, no. 4, pp.
55:1–55:29, Mar. 2014.

[13] C. Varun, A. Banerjee, and V. Kumar, Anomaly detection: A survey,
ACM computing surveys (CSUR), 2009.

[14] D. Cheboli, Anomaly Detection of Time-Series, Phd Thesis, 2010.


