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Abstract—The Internet of Things (IoT) technology incorpo-
rates a large number of heterogeneous devices connected to
untrusted networks. Nevertheless, securing IoT devices is a
fundamental issue due to the relevant information handled in
IoT networks. The intrusion detection system (IDS) is the most
commonly used technique to detect intruders and acts as a second
wall of defense when cryptography is broken. This is achieved
by combining the advantages of anomaly and signature detection
techniques, which are characterized by high detection rates and
low false positives, respectively. To achieve a high detection rate,
the anomaly detection technique relies on a learning algorithm
to model the normal behavior of a node, and when a new
attack pattern (often known as signature) is detected, it will
be modeled with a set of rules. This latter is used by the
signature detection technique for attack confirmation. Activating
the anomaly detection technique simultaneously at each low-
resource IoT device and all the time could generate a high-energy
consumption.

Thereby, we propose a game theoretic technique to activate
anomaly detection technique only when a new attack’s signature
is expected to occur; hence a balance between detection and
false positive rates, and energy consumption is achieved. Even by
combining between these two detection techniques, we observed
that the number of false positives is still non null (almost equal
to 5%). Thereby, to decrease further the false positive rate, a
reputation model based on game theory is proposed. Simulation
results show that this lightweight anomaly detection outperforms
current anomaly detection techniques, since in scaling mode
(i.e., when the number of IoT devices and attackers are high)
it requires low energy consumption to detect the attacks with
high detection and low false positive rates, almost 93% and 2%,
respectively.

Index Terms—Anomaly detection technique, reputation model,
IoT devices, game theory, and intrusion detection system.

I. INTRODUCTION

INTERNET of Things (IoT) envisages a future in which

a large number of digital and physical things or objects

(e.g., cameras, wireless sensor network - WSN, smart meters,

smartphone, and TV sets) can be connected; while providing

open access to a variety of data generated by such devices

to provide new services to citizens and companies [1]. IoT

services span different domains, such as medical aids, auto-

motive, smart grid, and many others [2]. The term internet

of things refers to uniquely identifiable objects and their

virtual representations in an “internet-like” structure. These

objects can be anything from large buildings, industrial plants,

planes, cars, machines, any kind of goods, specific parts of a

larger system to human beings, animals and plants and even

specific body parts of them. While IoT does not assume a

specific communication technology, wireless communication

technologies will play a major role, and in particular, WSNs

will proliferate many applications and many industries. The

small, rugged, inexpensive and low powered WSN sensors

will bring the IoT to even the smallest objects installed in

any kind of environment, at reasonable costs. Integration of

these objects into IoT will be a major evolution of WSNs.

Security is one of the major challenging issues in IoT due to

the wireless medium characteristics, the relevant information

handled by IoT devices and the hostile environment where

these devices are deployed. Intrusion Detection Systems (IDS)

proved their effectiveness to secure networks against both

internal and external attacks since they act as a second layer

of defense when cryptography is broken [3]. In an IDS-based

solution, we use special agents to monitor the behavior of a

target device that raise an alarm when an intruder is detected

[4],[5]. These detection policies could be categorized into two

techniques [4]-[7]: (i) Signature-based detection (or Misuse
detection), which is based on detection of the attack type

by comparing the behavior of the analyzed target to a set

of predefined rules related to each attack signature [8],[9].

Such technique aims to reduce the false positive and requires

a low computation overhead to model the normal behavior

of a device. Nevertheless, the drawback of this technique

is that it can only detect known attacks, described by a set

of signatures. (ii) Anomaly detection, which uses supervised

learning algorithms [10]-[13], such as data mining, support

vector machine (SVM) and neural networks (NNs), to build

the normal behavior. The advantage of such technique is its

high detection rate since it has the ability to detect new attacks

that have never occurred before. However, the main drawback

is the high computation overhead required to model the normal

behavior.

In recent works [7],[14]-[16], the combination of these

two detection techniques, anomaly and signature, exhibited

high detection and low false positive rates even under the

worst case scenario (i.e., when the number of attackers is

high). However, these hybrid techniques propose to activate
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the anomaly detection simultaneously and all the time at low-

resource IoT devices; which could highly increase the over-

head and as a consequence degrade the network performance

[10],[12],[17]. Thereby, our aim in this research work is to

propose a lightweight anomaly detection technique by assuring

a tradeoff between a high level of security (i.e., high detection

and low false positive rates) and a low energy consumption.

This optimal tradeoff is achieved by activating the anomaly

detection only when a new attack pattern (i.e. signature)

is expected to occur. The activation of anomaly detection

technique is done, thanks to a proposed security game model,

where we modeled the security strategy as a game formulation
between the intruder attack and the IDS agent embedded at

IoT devices. With the help of Nash Equilibrium, we determine

the equilibrium state that allows the IDS agent to activate

its anomaly detection technique in order to detect new attack

patterns. To the best knowledge of the authors, this research

work is the first to propose the activation of anomaly detection

in low-resource IoT devices. In fact, most of hybrid intrusion

detection techniques [7],[14]-[16] activate the anomaly detec-

tion simultaneously at low-resource IoT devices; which could

highly increase the overhead and as a consequence degrade

the network performance. Moreover, the false positive issue

is a major challenge to address since classifying a legitimate

IoT device as an attacker leads to a degradation of the IDS’s

performance. Thereby, to decrease further the false positive

rate, a reputation model based on game theory is proposed.

This model aims to rank the monitored IoT devices into

Legitimate, Suspect and Malicious nodes according to their

reputation scores. Figure 1 illustrates the two components

of the IDS agent: the lightweight anomaly detection and the

reputation model.

In this paper, we target IoT scenarios aiming to secure the

low powered WSN, whereby the objects are defined as low

powered devices with memory and energy constraints. The

objects could be used in a smart home to return the information

related to temperature levels and energy consumption. They

connected to Internet through a gateway to transmit sensitive

information to a remote center for further analysis.

This paper is organized as follows. Section II highlights

some related work. It also introduces the network model that

we intend securing. In Section III, we explain the process of

anomaly detection’s activation by using a game theory ap-

proach. Section IV explains our reputation model and Section

V provides the simulation results. We conclude our work and

give directions for future research work in Section V.

II. BACKGROUND

In this section, we first summarize some relevant intrusion

detection frameworks presented in the literature and discuss

their main shortcomings. Afterwards, we present the network

architecture that we intend securing.

A. Related work

IDS provides an effective protection to IoT networks against

both external and internal intruders [4], and acts as a second

Figure 1. The main components of the envisioned IDS

wall of defense when cryptography is broken. In this subsec-

tion, we present some IDS examples, introduced for different

networks (e.g., IoT, smart grid, wireless sensor networks -

WSN, and vehicular networks - VANET), and discuss their

shortcomings.

In [11],[18],[19], the authors use an anomaly detection

technique to monitor the smart grid’s IoT devices such as

smart meters and identify any external or internal attack that

targets the grid. According to their simulation results, the

anomaly detection technique, which is based on a learning

algorithm, exhibits a high detection rate (i.e. above 90%).

However, embedding this heavy detection technique for low-

resources IoT devices could incur a high computation overhead

and subsequently degrades the smart grid performance.

In [4], the authors design and implement an intrusion de-

tection system for low-resource IoT devices, named SVELTE.

In SVELTE, rules are used to identify the most lethal attacks

that target the routing protocol, e.g., spoofed or altered infor-

mation, sinkhole, and selective-forwarding attacks. SVELTE is

embedded in Contiki OS and according to the obtained simu-

lation results, the detection system requires a low overhead to

achieve a high detection rate. However, a high false positive is

generated, specifically when the number of attacks increases.

In [7],[14],[20], the authors propose a hybrid intrusion

detection framework for a heterogonous WSN, whereby a

signature detection technique runs at each sensor node and

anomaly detection technique runs at a powerful node, e.g.

cluster-head or base station. The anomaly detection technique

computes a rule related to each attack’s signature that it detects

and forwards this new rule to sensor nodes (located within its

range). The sensor adds the rule into its database and compares

the behavior of a monitored node with the stored rules (related

to each signature). If a match occurs, the analyzed node is

defined as an attacker. Such hybrid detection incurs a high

communication overhead since a high number of signatures

are forwarded to sensor nodes, specifically when the number

of attackers is high in the network. In [15], both anomaly

detection and signature-based detection techniques run at the

same sensor node. According to the simulation results, the

proposed hybrid intrusion detection system generates a high

detection rate with a low false positive rate. However, the
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major drawback of this work is that a heavy machine-learning

algorithm is activated in permanent fashion at each sensor in

order to build intrusion rules. Therefore, a high computation

overhead could be generated resulting in a rapid decrease of

the network lifetime.

Recently, new intrusion detection frameworks [21]-[23] are

developed to secure VANETs against cyber-attacks. Specifi-

cally in [21], the authors design and implement an accurate

and lightweight intrusion detection framework, called AECFV,

in order to protect VANETs against the most dangerous attacks

that could occur on such networks. Three kinds of IDS agents

are proposed to secure the network. They are namely Local

Intrusion Detection System (LIDS), Global Intrusion Detection

System (GIDS) and Global Decision System (GDS). AECFV

uses a hybrid detection technique (i.e. rules-based detection

and anomaly detection based on support vector machine -

SVM) to identify the attacks. According to the results of the

conducted simulations, a hybrid detection technique allows a

high detection and low false positive rates. However, AECFV

generates a high overhead since the anomaly detection is

activated all the time: it does not switch to idle mode. In [22],

an efficient and lightweight intrusion detection mechanism,

called ELIDV, is proposed to secure VANET. ELIDV relies

on rules-based intrusion detection to identify three kinds

of attacks: Denial of Service (DoS), integrity target, and

false alert’s generation. Simulation results show that ELIDV

exhibits a high-level security in terms of highly accurate

detection rate (detection rate more than 97 %), low false

positive rate (close to 1%), and exhibits a low overhead

compared to contemporary intrusion detection frameworks.

However, when the number of attackers is high, the detection

accuracy decreases exponentially.

Hence, the anomaly detection technique has the ability to

detect almost all attacks that occur in a network. However,

a permanent activation (i.e., no idle state) of this technique

for low-resource IoT devices could decrease rapidly their

lifetimes. Thereby, in this paper we make a tradeoff be-

tween constrained energy resources and detection accuracy by

activating the anomaly detection only when a new attack’s

signature is expected to occur. Moreover, to decrease further

the false positive rate a reputation model is proposed.

B. Network architecture

As shown in Figure 2, this paper addresses the security

issues of mobile (and static) sensor nodes considered as

the main components of IoT technology [24],[25]. Each IoT

device (i.e. sensor) activates an IDS agent to monitor its

neighboring devices. According to [26], the communication

overhead may rapidly decrease the network lifetime compared

to a computation overhead. Thereby, due to the communication

overhead’s issue, both anomaly and signature-based detection

techniques should run in the same IDS agent. The signature-

based detection technique compares the behavior of a target

device against a set of rules related to each attack pattern (i.e.

signature) stored in the IoT device’s database.

In [6],[7],[10],[20],[22], the authors describe the signatures

of cyber-attacks that target IoT devices and highlight some
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Figure 2. The main components of the envisioned IDS.

features and rules related to each attack signature in Table I.

The anomaly detection technique relies on a learning algorithm

to carry out a training and classification process, as shown in

Algorithm 1. In the training process, the IDS agent monitors

the features (e.g., PDR, SSI, TNR, MDR, PSR, and RTT)

of the suspected IoT devices, and models a normal (and

anomaly) behavior of a target device. In the classification

process, the anomaly detection technique classifies the new

features according to the anomaly and the normal patterns,

determined during the training phase. In case a new attack

pattern is detected, the IDS builds a rule related to each new

detected attack pattern. Here, the threshold related to the new

attack is updated as shown in Table 1. Afterward, this threshold

is stored to be used by the signature detection technique.

We refer the reader to [7][10][21] for more details about the

anomaly detection based on machine learning algorithm. It

shall be noted that in this research work, we use a threshold

based scheme. However, other relevant schemes can be used,

e.g., entropy-based signature detection [23].

To save energy, the anomaly detection technique is activated

only when a new attack’s signature is expected to occur by

a malicious device. Thereby, a security game approach for

low-resource IoT devices is proposed as explained in the next

section.
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Algorithm 1 Anomaly detection process

1: Begin (at t=0)

2: IDS Computes the features of a suspected IoT device

3: Models the normal behavior of each Featurei and

Computes their related threshold Ti+1

4: If (Featurei > Ti+1 ) && (Ti+1 = Ti)

5: // The suspected IoT device is an attacker
6: Else If ( Featurei > Ti+1 ) && (Ti+1 �= Ti)

7: The signature based detection should Update the rule

(Replace Ti by Ti+1 )

8: Else If ( Featurei < Ti+1 )

9: // The suspected IoT device is a normal node
10: Repeat until the attacker will be removed from the

network

Table I
ATTACKS’ SIGNATURES

Attacks Features Rulesi: attack detection depends on
threshold Ti; where n is the number of
suspected IoT devices

Hello flood and
Sink hole

Packets
Dropping
Rate (PDR)
and
Signal Strength
Intensity (SSI)

PDR > T11. . . PDR > T1n
and
SSI > T21. . . SSI > T2n

Black hole PDR PDR > T31. . . PDR > T3n
Jamming Packets Send

Rate (PSR) and
SSI

PSR > T41. . . PSR > T4n
and
SSI > T51. . . SSI > T5n

Resource exhaus-
tion

Total Number
of Requests
(TNR)

TNR > T61. . . TNR > T6n

Man-in-the-
middle

Messages
Modified Rate
(MDR) and
SSI

MDR > T71. . . MDR > T7n
and
SSI > T81. . . SSI > T8n

Sybil SSI and
packet’s Round
Trip Time
(RTT)

SSI > T91. . . SSI > T9n
and
RTT > T101. . . RTT > T10n

Spoofed and al-
tered information

MDR MDR > T111. . . MDR > T11n

Wormhole PDR and SSI PDR > T121. . . PDR > T12n
and
SSI > T131. . . SSI > T13n

. . . . . . . . . . . . . . . . . .
Attackj Featurek Featurek >Ti

III. GAME-THEORETIC METHODOLOGY FOR OPTIMAL

ACTIVATION OF ANOMALY DETECTION TECHNIQUE

In this section, we first derive the payoff matrix of the game

related to the IDS and attacker; and define a set of strategies

and payoffs that could occur between players, respectively.

Afterward, with the help of Nash Equilibrium (NE), we

determine the equilibrium state in which the IDS agent will

activate its anomaly detection technique to train, classify and

build a rule related to a new attack’s signature.

A. Game description

In our approach, we consider a set of players,

P={p1, p2,....., pn}, where each player represents either

an IDS agent that runs at each IoT device or an attacker.

Each player has a set of strategies, where strategy St

= {sign1, sign2,....., signm} represents m signatures

detected by the IDS agent at time t; and strategy S′
t′

= {sign′
1, sign′

2,....., sign
′
m′} represents m’ signatures

launched by the attacker during a period of time t’. Let

si denote the probability that the IDS has a strategy St+i

and s′j denote the probability that the attacker adopts the

strategy S′
t′+j , where

∑n
i=0 si=1 and

∑n
j=0 s

′
j=1. S and

S’ denote the probability distribution vectors S={s0,. . . , sn}
and S’={s′0,. . . , s′n}, respectively.

In this game, time is divided into regular intervals called

time-slots. At the end of each time slot, the IDS player

activates its anomaly detection technique to carry out training

and classification processes; afterward it builds a rule related

to each new attack’s signature. Furthermore, when a new

signature is detected, the IDS player’s payoff is increased and

the attacker player’s payoff is decreased as shown in Equations

1 and 2, respectively. Otherwise, the IDS player’s payoff is
decreased and attacker player’s payoff is increased as shown

in Equations 3 and 4, respectively. The total payoff of IDS and

attacker is equal to Equations 5 and 6, respectively. Based on

this historic observation, the IDS can locally have knowledge

of the frequencies of a signature’s occurrence; and with the

help of NE it predicts when anomaly detection should be

activated for the definition of a rule. The NE aims at making a

dilemma between accuracy detection and energy consumption.

Moreover, IDS agents, located in the same neighborhood,

cooperate together in order to achieve the highest possible total

benefit. This means that IDSs exchange the list of signatures

(with the signatures’ detection time) to grow knowledge of

the frequencies of attacks’ occurrence and hence lead to an

increase in the accuracy prediction.

QIDS =

s∑
i=1

(Gpositivei − CostIDS)

s
(1)

Qattacker =

s∑
i=1

−(Gpositivei + Costattacker)

s
(2)

Q′
IDS =

k∑
i=1

−(Gnegativei + CostIDS)

k
(3)

Q′
attacker =

k∑
i=1

Gnegativei

k
(4)

Qt = QIDS +Q′
IDS (5)

Q′
t′ = Qattacker +Q′

attacker (6)

Here, Gpositive and Gnegative ∈ [0,1] are respectively the

positive and negative gains, which are set at the beginning to

zero and their values increase or decrease depending on the

actions carried out by the IDS and attacker. s is the number

of correct signature detections and k is the number of failed

signature detections. Costattacker and CostIDS ∈ [0,1] are

respectively the required cost’s rate (i.e. overhead caused by

the computing processing) to generate a new attack signature

by an attacker and activation of anomaly detection by the IDS



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2017.2701551, IEEE
Transactions on Vehicular Technology

6

agent. Since the IDS agent monitors the behavior of attacker,

we assume in this game that the IDS is aware of Costattacker
for an attacker. It shall be noted that Qt and Q′

t′ vary between

0 and 1.

Our security game is a complete information game since the

IDS agent knows the attacker player’s payoff (located within

its radio range).

Table II illustrates the payoff matrix of the game between

IDS agent and attacker that targets IoT device.

Table II
TABLE II. PAYOFF MATRIX OF ANOMALY DETECTION GAME

Attacker IDS
St St+1 . . . .. St+n

S′
t′ (Q′

t′ ,Qt) (Q′
t′ , Qt+1) (Q′

t′ , . . . ) (Q′
t′ Qt+n)

S′
t′+1 (Q′

t′+1,
Qt)

(Q′
t′+1, Qt+1) (Q′

t′+1, . . . ) (Q′
t′+1, Qt+n)

. . . . . . (. . . ,Qt) (. . . , Qt+1) (. . . , . . . ) (. . . , Qt+n)
S′

t′+n (Q′
t′+n,

Qt)
(Q′

t′+n ,
Qt+1)

(Q′
t′+n, . . . ) (Q′

t′+n, Qt+n)

B. IDS and attacker gaming

In this subsection, we introduce the static and dynamic game

models to compute the NE that represents the best strategy of

the IDS to launch its anomaly detection technique.

a) Static game between IDS and attacker: In a static

game, once a player decides his strategy, he does not have

a second chance to change it [27]. According to Nash, there
is a mixed strategy NE in which both IDS and attacker do

not change their actions. As a result, we use NE to predict

the equilibrium state in which the attacker will generate a

new signature regardless the action of IDS (i.e. launches an

anomaly detection technique or not).

Lemma 1
Let J(ρ1, ρ2) denote the attacker and IDS’s gains, where

ρ1 ∈ {St, St+1,. . . , St+n } and ρ2 ∈ {S′
t′ , S′

t′+1,. . . ,
S′

t′+n}, so that J(St+n, S
′
t′+n ) = (Qt+n, Q

′
t′+n). Here, n

is the maximum number of strategies that IDS and attacker

carry out.

A pair of strategies (ρ1
∗
and ρ2

∗
) is a NE point if the

following inequality[29]is satisfied:

J(ρ1
∗
, ρ2 ) ≤ J (ρ1

∗
, ρ2

∗
) ≤ J (ρ1, ρ2

∗
) (7)

There is at least one NE point J(ρ1
∗
, ρ2

∗
)that satisfies

Inequality 7.

Proof 1
The average payoffs of the attacker and the IDS are defined

in Equations 8 and 9 respectively.

J(St+i)=
n∑

i=0

si*(Qt+i) (8)

J(S′
t+i)=

n∑
j=0

s′j*(Q′
t′+j) (9)

In this game, the IDS and attacker try to maximize and min-
imize J(St+i, S

′
t+i), respectively. The equilibrium, achieved

by the players in the mixed strategies, is defined as follows:

min
S′ max

S
J
(
Qt+i, Q

′
t
′
+i

)
=

⎧⎪⎨
⎪⎩

min
S′

∑n
j=0 S

′
j∗( Q′

t′+j)

,
max

S

∑n
i=0 si∗( Qt+i)

The NE of a mixed strategy comprises the strategies of IDS

and attacker, in the form of (ρ1
∗
,s∗i ),(ρ

2∗, s′∗j ) which satisfies

Inequality 7. Hence, the mixed-strategy equilibrium is unique

and it is given by:

NE =

⎧⎪⎨
⎪⎩

min
S′

∑n
j=0 s

′
j∗( Q′

t′+j)

,
max

S

∑n
i=0 si∗( Qt+i)

(10)

The attacker will generate a new signature when he

reaches the equilibrium, i.e. min
S′

∑n
j=0 s

′
j∗( Q′

t′+j) regard-

less the action taken by the IDS. Therefore, to assure a

tradeoff between accuracy detection and low energy con-

sumption, the IDS activates its anomaly detection technique

only when the equilibrium is reached, which is defined as

max
S

∑n
i=0 si∗( Qt+i) .

b) Dynamic game between IDS and attacker: In the

static game model discussed above, no player has the chance

to modify his strategy [27]. However, the dynamic game allows

the IDS and attacker to adjust their strategies according to the

observations of both players’ past choices.

Let us consider that the game lasts for h time steps in total.

We compute the total payoff of a player by adding its time

serial payoffs over the entire game, i.e.
∑h

t=1 J (ρ1t , ρ2t ).

Lemma 2
The NE solution of the dynamic game satisfies the following

inequality for all ρt , where t=1. . . , h:

J
(
ρ1∗1 , . . . , ρ1∗h−1, ρ1∗h ; ρ21 , . . . , ρ2∗h−1, ρ2∗h

)
≤ J

(
ρ1∗1 , . . . , ρ1∗h−1, ρ1∗h ; ρ2∗1 , . . . , ρ2∗h−1, ρ2∗h

)
≤ J

(
ρ11 , . . . , ρ1∗h−1, ρ1∗h ; ρ2∗1 , . . . , ρ2∗h−1, ρ2∗h

)
(11)

Proof 2
According to [28][29] the value of the dynamic game for h

time steps can be described as:

J
(
ρ11 , . . . , ρ1h−1, ρ1h; ρ21 , . . . , ρ2h−1, ρ2h

)
= J

(
ρ11 , ρ21

)
+. . .+ J

(
ρ1h−1 , ρ2h−1

)
+ J

(
ρ1h , ρ2h

)
(12)

Based on Theorem1 introduced before, every NE-point

solution at time h J
(
ρ1∗h , ρ2∗h

)
satisfies the following

inequalities:
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J
(
ρ11 , . . . , ρ1h−1, ρ

1∗
h ; ρ21 , . . . , ρ2h−1, ρ

2
h

)

≤ J
(
ρ11 , . . . , ρ1h−1, ρ

1∗
h ; ρ21 , . . . , ρ2h−1, ρ

2∗
h

)

≤ J
(
ρ11 , . . . , ρ1h−1, ρ

1
h ; ρ21 , . . . , ρ2h−1, ρ

2∗
h

)

= J
(
ρ11 , ρ21

)
+ . . .+ J

(
ρ1h−1 , ρ2h−1

)
+ J

(
ρ1∗h , ρ2h

)

≤J
(
ρ11 , ρ21

)
+ . . .+ J

(
ρ1h−1 , ρ2h−1

)
+ J

(
ρ1∗h , ρ2∗h

)

≤ J
(
ρ11 , ρ21

)
+ . . .+ J

(
ρ1h−1 , ρ2h−1

)
+ J

(
ρ1h , ρ2∗h

)
(13)

Then, we subtract and add

J
(
ρ11 , ρ21

)
+ · · ·+ J

(
ρ1h−1 , ρ2h−1

)
and

J
(
ρ1∗1 , ρ2∗1

)
+ · · ·+ J

(
ρ1∗h−1 , ρ2∗h−1

)
, respectively

on both sides of the inequality sign. Hence, we obtain the

following inequality:

J
(
ρ1∗1 , . . . , ρ1∗h−1, ρ

1∗
h ; ρ2∗1 , . . . , ρ2∗h−1, ρ

2
h

)
≤ J

(
ρ1∗1 , . . . , ρ1∗h−1, ρ

1∗
h ; ρ2∗1 , . . . , ρ2∗h−1, ρ

2∗
h

)
≤ J

(
ρ1∗1 , . . . , ρ1∗h−1, ρ

1
h ; ρ2∗1 , . . . , ρ2∗h−1, ρ

2∗
h

)
(14)

Here, we can permute between 1 and h, hence we obtain:

J
(
ρ1∗1 , . . . , ρ1∗h−1, ρ

1∗
h ; ρ21 , . . . , ρ2∗h−1, ρ

2∗
h

)
≤ J

(
ρ1∗1 , . . . , ρ1∗h−1, ρ

1∗
h ; ρ2∗1 , . . . , ρ2∗h−1, ρ

2∗
h

)
≤ J

(
ρ11 , . . . , ρ1∗h−1, ρ

1∗
h ; ρ2∗1 , . . . , ρ2∗h−1, ρ

2∗
h

)
(15)

As a result, we claim that the proposed security game

assures a NE solution in a dynamic game by satisfying

recursively a set of h pairs of inequalities.

The hybrid intrusion detection approach allows getting high

detection and low false positive rates. However, the number

of false positive is still not null, specifically when the number

of attackers increases. Therefore, to address this issue a

reputation model based on game theory is proposed and is

detailed in the following section.

IV. REPUTATION MODEL

The false positive issue is a major challenge to address since

ranking a legitimate node as an intruder makes the proposed

security framework inefficient. Furthermore, it is not wise to

eject the monitored node immediately when it is suspected to

carry out a malicious anomaly since this misbehavior could be

simply due to noise or an unreliable communication channel.

Thereby, a reputation game is proposed to decrease the false

positive rate by ranking the monitored target into Legitimate,
Suspect and Malicious node according to its reputation score;

which is defined as follows:

1) Legitimate node is an IoT node that exhibits a normal

behavior throughout its network lifetime,

2) Suspected node is an IoT node that does not work

correctly due to noise or to an unreliable communication

channel; by exhibiting a misbehavior pattern, e.g. does

not forward the packets from legitimate IoT devices. It

is not interesting to rank immediately such node as an

attacker and eject it. We propose to rank it as a Suspected
node,

3) Malicious node behaves persistently bad, by launching

lethal attacks. These attacks are DoS threats, where they

aim at exhausting the network resources or disrupting its

proper operation.

With the help of game theory, we determine the reputa-
tion thresholds that allow us to rank the monitored node as

Normal, Suspect and a Malicious node according to their

reputation scores and hence reduce the false positive rates.

In the following, we explain how to compute the reputation

thresholds for ranking the monitored targets into appropriate

class, Legitimate, Suspect and Malicious node.

A. Security game

In the proposed security game, there are two players: The

defender which is the IDS agent and the target node. Each one

of them has a set of strategies to increase its reputation pay-

off. JDefender and JTarget denote, respectively, the defender

and the target node players in the following. The players

JDefender and JTarget have a set of strategies ϕdefender =
{ϕ′1

i | i = 1, 2, 3} and ϕTarget= {ϕ′2
j |j = 1, 2, 3},

respectively. ϕ′1
1, ϕ

′1
2, ϕ

′1
3 are the strategies of JDefender

to rank the monitored target node as Legitimate, Suspect and

Malicious node, respectively; and ϕ′2
1, ϕ′2

2, ϕ′2
3 are the

strategies of JTarget to be Normal, Suspect and Malicious
node, respectively.

Let xi be the probability that the JDefender adopts ϕ′1
i ,

and yj be the probability that the attacker adopts ϕ′2
j , where∑3

i=1 xi = 1 and
∑3

j=1 yj = 1.

Tables III and IV illustrate the matrix game between

players; R and R represent the reputation payoff of the

JDefender and JTarget, respectively. To increase their utility

function (UDefender and UTarget), each player performs an

adequate strategy. Since the aim of this intrusion detection

game is to determine the reputation thresholds of Suspect node
and Malicious node, we assume that the defender and the target

carry out only these couple of strategies (ϕ′1
1, ϕ

′1
2) or (ϕ

′1
1,

ϕ′1
3) and (ϕ′2

1, ϕ
′2

2) or (ϕ′2
1, ϕ

′2
3), respectively.

Table III
FIRST REPUTATION PAYOFF

As shown in Table III, a set of reputation payoffs R
and R′ of the players JDefender and JTarget could be defined

according to the couple of strategies (ϕ′1
1, ϕ

′1
2) and (ϕ′2

1,

ϕ′2
2) that the players perform; which are:
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(a) In Eq. 16, the reputation payoffs of both players increase

since the monitored target is a Legitimate node and the

defender delivers a correct detection.{
R11 = αiH

t
i,j − Costt

R′
11 = αiH

t
i,j

(16)

Ht
i,j ∈ [0,1] represents the high reputation score given by

defenderi to targetj at time t, Costt ∈ [0,1] is the energy

consumption generated by the defender to rank the target node

as Legitimate, Suspect or Malicious node at time t and αi ∈
[0,1] represents the weight factor.

(b) In Eq. 17, the reputation payoffs of the defender and tar-

get node decrease and increase, respectively since the defender

provides a wrong detection; however the target is ranked as a

Legitimate node.

{
R12 = −(βiM

t
i,j + Costt)

R′
12 = αiH

t
i,j

(17)

M t
i,j represents the medium reputation score at time t; where

M t
i,j=1/2 Ht

i,j and βi ∈ [0,1] represents the weight factor.

(c) In Eq. 18, the reputation payoffs of both players decrease

since the defender provides a false detection and wrongly

accuses the Legitimate node as Suspect.
{

R21 = −(βiM
t
i,j + Costt)

R′
21 = −βiM

t
i,j

(18)

(d) In Eq. 19, the reputation payoff of JDefender increases

since it delivers a correct detection. On the other hand, the

reputation payoff of JTarget decreases as it is detected as a

Suspect node. {
R22 = αiH

t
i,j − Costt

R′
22 = −βiM

t
i,j

(19)

Table IV
SECOND REPUTATION PAYOFF

A set of reputation payoffs R and R’ can be defined

according to couple of strategies (ϕ′1
1,ϕ

′1
3) and (ϕ′2

1,ϕ
′2

3)

that JDefender and JTarget have adopted, i.e.

(a) The reputation payoffs of the players

JDefender and JTarget increase since the defender ranks

the Legitimate node as Legitimate and are respectively equal

to R31 and R′
31 as shown in Eq. 20.{

R31 = αiH
t
i,j − Costt

R′
31 = αiH

t
i,j

(20)

(b) When JTarget is a Malicious node and JDefender ranks

it as a Legitimate node, the reputation payoffs R′
32 and R32

increases and decreases, respectively as shown in Eq. 21.{
R′

32 = αiH
t
i,j

R32 = −(γiLt
i,j + Costt)

(21)

Lt
i,j ∈ [0,1] represents the low reputation score given by

defenderi to targetj at time t and γi ∈ [0,1] represents the

weight factor, where αi+βi+ γi=1.
(c) When JTarget is a Legitimate node and JDefender ranks

it as Malicious node, both reputation payoffs R′
41 and R41

decrease as shown in Eq. 22.{
R′

41 = −γiLt
i,j

R41 = −(γiLt
i,j + Costt)

(22)

(d) The reputation payoffs of the players JTarget and

JDefender decrease and increase, respectively since the target

is a Malicious node and defender ranks it as Malicious and

are respectively equal to R′
42 and R42 as shown in Eq. 23.{

R′
42 = −γiLt

i,j

R42 = αiH
t
i,j − Costt

(23)

It is desired that players JTarget and JDefender negotiate their

interdependent strategies to reach to an optimized steady state

solution in which a consensus between players is established

and hence a stability of the games is established. In the

following, the steady state solution, defined as a Saddle-point
equilibrium, is determined.

B. Reputation thresholds

The stability in our game is the best strategy raised by

JTarget regardless the strategy of JDefender and vise versa.

In the following, we determine the utility function for each

player, UDefender and UTarget. After that, we provide the

reputation thresholds that allow us to rank the monitored node

as Normal, Suspect and a Malicious node.
According to Tables III and IV, the utility functions of

the players JTarget and JDefender, which are respectively

UTarget and UDefender depend on the strategy that players have

adopted, i.e.,

UTarget(ϕTarget = ϕ′2
1)=R

′
11 . x1+R

′
21. x2 or

R′
31. x1 +R′

41. x3

UTarget(ϕTarget = ϕ′2
2) = R′

12. x1 +R22. x2

UDefender(ϕdefender=ϕ
′1

1)= R11. y1+R12. y2 or

R31. y1 +R32. y3
UDefender(ϕdefender = ϕ′1

2) = R21. y1 +R22. y2
UTarget(ϕTarget = ϕ′2

3) = R′
32. x1 +R′

42. x3

UDefender(ϕdefender = ϕ′1
3) = R41. y1 +R42. y3

Lemma3: JTarget is a Suspect node when x2 >x* and

JTarget ranks it as Suspect when y2>y*; where (x*, y*) is

defined as a first Saddle-reputation equilibrium (OFR) point.

Proof 3: The target and defender adopt strategies ϕ′2
2 and

ϕ′1
2, respectively when

UTarget(ϕTarget = ϕ′2
2) >UTarget(ϕTarget = ϕ′2

1) and

UDefender(ϕdefender=ϕ
′1

2)>UDefender(ϕdefender=ϕ
′1

1),i.e.,
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⎧⎨
⎩

R′
12. x1+R′

22. x2 > R′
11. x1+R′

21. x2

,
R21. y1+R22. y2 > R11. y1+R12. y2

(24)

It is noted that x1+x2 +x3 = 1 and y1+y2 +y3 = 1. Here,

we assume that only a suspicious or normal behavior could be

launched by JTarget, which lead to x1+x2 >> x3 and y1+y2
>> y3. Hence we obtain, x1= (1-x2) and y1= (1-y2). As a

result, we can deduce from Eq. 24 the following equation:

⎧⎨
⎩

x2 > R′
11−R′

12

R′
22+R′

11−R′
12−R′

21

,
y2 > R11−R21

R22+R11−R21−R12

(25)

Therefore, the IDS ranks the target IoT device as a Suspected
node when OFR point is reached which is equal to (x*, y*)

= ( R′
11−R′

12

R′
22+R′

11−R′
12−R′

21
, R11−R21

R22+R11−R21−R12
); where y* is a

reputation threshold of a suspected node.

Lemma 4: JTarget is a Malicious node when x3 >x’* and

JTarget ranks it as Malicious when y3>y’*; where (x’*, y’*)
is defined as a second Saddle-reputation equilibrium (OSR)
point.

Proof 4: The target and defender adopt strategies ϕ′2
3 and

ϕ′1
3, respectively when UTarget(ϕTarget = ϕ′2

3)>

UTarget(ϕTarget = ϕ′2
1) and

UDefender(ϕdefender=ϕ
′1

3)>UDefender(ϕdefender=ϕ
′1

1),i.e.,

⎧⎨
⎩

R′
32. x1+R′

42. x3 > R′
31. x1+R′

41. x3

,
R41. y1+R42. y3 > R31. y1+R32. y3

(26)

Here, we assume that only a malicious or a normal behavior

could be launched by JTarget, which lead to x1+x3 >> x2 and

y1+y3 >> y2. Hence, we obtain x1= (1-x3) and y1= (1-y3).
As a result, we can deduce from Eq. 24 the following equation:

⎧⎨
⎩

x3 > R′
31−R′

32

R′
42+R′

31−R32−R′
41

,
y3 > R31−R41

R42+R31−R41−R32

(27)

Therefore, the IDS ranks the target IoT device as a Mali-
cious node when OSR point is reached which is equal to (x’*,

y’*) = ( R′
31−R′

32

R′
42+R′

31−R32−R′
41
, R31−R41

R42+R31−R41−R32
), where y’* is

a reputation threshold of a malicious node.

y is the probability that IDS agents identify the target IoT

device as Suspected or Malicious node, where y’*> y* and the

condition to rank the monitored IoT device in an appropriate

class is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

IoT device is a Malicous node when
y > y′∗ = R31−R41

R42+R31−R41−R32

IoT device is a Suspected node when
y > y∗ = R11−R21

R22+R11−R21−R12

IoT device is a Normal node when
y < y∗

V. PERFORMANCE EVALUATION

Our approach was implemented in wireless sensor networks,

well-known for low-resource IoT devices. In the simulation,

we use a TOSSIM simulator [30], a simulator of TinyOS sen-

sor nodes. As explained in the introduction section, the hybrid

intrusion detection scheme, combining the signature-based

detection and anomaly-detection techniques, exhibits high de-

tection and low false positive rates. In this section, we compare

our lightweight hybrid intrusion detection system with current

hybrid intrusion detection techniques [7],[14],[20]. In the latter

and as explained in the related work section, the anomaly

detection technique runs on each sensor node and is activated

at all the time. This is unlike the lightweight technique, where

the anomaly detection is activated (with the help of game

theory) only when a new attack’s signature is expected to

occur. Here, we evaluate the accuracy detection (i.e., detection

and false positive rates), energy consumption and efficiency.

These metrics are defined as follows:

1) Detection Rate (DR): defined as the ratio of the number

of correctly detected attackers to the total number of

attackers,

2) False Positive Rate (FPR): defined as the ratio of the

number of normal sensor nodes incorrectly classified as

attackers to the total number of normal sensor nodes.

3) Energy Consumption (EC): defined as the total energy

consumed by all sensors and computed as follows [10]:

Etotal =

∑N
i=1 Enodei

N
(28)

Where Etotal is the total energy of the network and N is

the number of sensor nodes.

1) Efficiency (E), defined as the time required to identify a

malicious node.

E=

n∑
i=1

Ri

n
(29)

Where Ri is the time required for the IDS agent i to detect

the occurrence of an attacker.

A. Simulation setup

In our network, the mobile and static sensors are randomly

deployed over a square area of (300×300) m2. Mobile sensor

nodes follow a deterministic mobility model [31], whereby the

mobile sensors follow well-defined paths and choose random

speeds from within the interval [min speed, max speed]. We

vary the number of attackers from 10% to 40% of overall

nodes. We insert two categories of attackers: (i) attackers
with a transitory misbehavior that oscillate between normal

and malicious behaviors and (ii) attackers with a permanent
misbehavior that persist to act as malicious node, i.e. does not

switch on a normal behavior. In the simulation, the attacker

carries out the most dangerous attack, which is a DoS attack,

where he aims at exhausting the network resources or dis-

rupting its proper operation. The anomaly detection technique

used by the IDS agents is a Back Propagation Network (BPN),

which is the most typical and most general model to use in
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a neural network [32]. The main simulation parameters are

summarized in Table V. These parameters were chosen to be

as most realistic as possible.

Table V
SIMULATION PARAMETERS

Simulation time 900 seconds
Simulation area 300*300 m2
Number of sensors From 50 to 300
Number of attackers From 10 % to 40 % of

overall nodes
Radio model Lossy radio model
Radio range 15 meter
Sensor initial energy 9 Joule
Anomaly detection BPN
Mobility model Deterministic mobility

model

B. Results analysis

The main results are summarized below. In our simu-

lations, we first study the probability distribution vectors

S={s0,. . . , sn} and S’={s′0,. . . , s′n} and determine the NE
point where the attacker generates a new signature and the

IDS launches an anomaly detection technique, respectively.

Afterwards, we compute the accuracy detection, efficinecy

and energy consumption for both lightweight hybrid detection

system and current hybrid detection systems [7],[14],[20],

and compare their performance. The accuracy detection and

energy consumption metrics are computed for each hybrid

detections system [7],[14],[20], and the average values of these

metrics are compared against those of the lightweight hybrid

detection system. We compute the average values because the

accuracy detection and energy consumption for each system

[7],[14],[20] are almost the same. The measurements are based

on averaging the results obtained from 15 simulation runs by

varying the number of sensors and attackers from 50 to 300

and from 10 % to 40 % of overall nodes, respectively.

a) Optimal Activation of Anomaly Detection: Optimal
NE point : As shown in Figure 3, the probability that an IDS

agent detects (m+n) signatures at time (t+n), i.e. sn and the

probability that the attacker launches (m’+n) signatures during
a period of time (t’+n), i.e., s′n increases and decreases,

respectively. This is due to the fact that, as explained in proof

1, in this security game, the IDS and attacker try to maximize

and minimize the value of J(St+i, S′
t′+i) respectively,

i.e.max
St+i

∑n
i=0 St+i ∗ (Qt+i) andmin

S′
t′+i

∑n
i=0 S

′
t′+i ∗

(
Q′

t′+i

)
.

The NE point (s∗n,s∗n) in which the attacker will generate a

new signature regardless the action of IDS and vice versa is

illustrated in Figure 3 and depends mainly on the values of

Gpositive, Gnegative, CostIDS , Costattacker and n as shown

in Table VI.

Table VI
NE POINTS

Gpositive Gnegative CostIDS Costattacker n s∗n s′∗n
0,08 0,2 0,2 0,3 20 0,43 0,24
0,1 0,3 0,3 0,4 25 0,50 0,31
0,18 0,4 0,5 0,65 30 0,55 0,35

Figure 3. Probability distribution vectors (S and S’): NE point

b) Detection & false positive rates: According to Figures

4 and 6, we observe that when the number of sensor nodes

and attackers increase, the detection rate (and fasle postive

rate) of both hybrid detection systems exceeds 92% (is lower

than 3%). Furhemore, we found out that the detection and

fasle postive rates of our lightweight detection system is close

to the current hybrid detection systems [7],[14],[20]. This

is achieved even when the number of sensors and attackers

increase. High detection and low false positive rates achieved

thanks to our detection system are attributed to the following

reasons: (i) Nash equilibrium, as it allows to determine the

state in which the attacker can launch a new signature with

a goal to carry out an attack without being detected. In this

case, the IDS agent activates its anomaly detection against

the suspected nodes and ejects the malicious attacker before

raising a lethal cyber-attack. (ii) Reputation model, as it aims

to rank the monitored IoT devices in an appropriate class

Normal, Suspect or Malicious according to their reputation

scores and hence leads to a further decrease of the false postive

rate. This is acheived by determining the optimal Saddle-
reputation equilibrium points, OFR and OSR. According to

Figure 5, it is apparent that without using the reputation model

the false positive rate generated by our lightweight hybrid

detection system increases quickly and reaches almost 5%

when the numbers of attackers and sensors are high.

c) Efficiency: Figure 7 plots the efficiency of current

hybrid detection systems [7],[14],[20] and our lightweight

hybrid detection system. As shown in Figure 7, we set the

number of sensors to 300 and vary afterward the number of

attackers from 5% to 40% of overall nodes. When the number

of attackers increases, the required time of IDS agents to detect

all malicious nodes for each detection system increases. From

Figure 7, we observe that our proposed lightweight hybrid de-

tection system requires less time to detect the attacks contrary

to the current hybrid detections systems. In our simulations,

we observe that when the number of attakers increases, a

considerable number of attackers can attack simultaneously

the attractive link. Thereby, our approach aims to launch the

anomaly detection technique in such link which leads the IDS

agents to detect the attackers within a short time as illustrated

in Figure 7. As a result, we claim that the lightweight hybrid
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(a): Number of attackers equals to 10% of overall nodes.

(b): Number of attackers equals to 30% of overall nodes.

(c): Number of attackers equals to 40% of overall nodes.

Figure 4. Detection rate of the current hybrid detection [7],[14],[20] and
lightweight hybrid detection systems.

Figure 5. False positive rate generated by lightweight hybrid detection system:
with and without reputation model.

(a): Number of attackers equals to 10% of overall nodes.

(b): Number of attackers equals to 30% of overall nodes.

(c): Number of attackers equals to 40% of overall nodes.

Figure 6. False positive rate of the current hybrid detection [7],[14],[20] and
lightweight hybrid detection systems (with reputation model).

detection system requires a short time to detect the attackers.

d) Energy consumption : One of the main constraints of

low-resource IoT devices is energy consumption since when

a heavy detection technique is embedded in such device it

decreases rapidly its lifetime. Thereby, energy is a highly

important point in the design and implementation of IoT

applications. As shown in Figure 8, we set the number of

attackers to 40% of overall nodes, afterward we vary the

number of sensors and compute the energy consumption. It

becomes apparent that the lightweight detection technique

requires a low energy consumption to achieve a high security

level. This is unlike the current hybrid detection systems

[7],[14],[20] since a high-energy consumption is generated
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Figure 7. Efficiency

specifically when the number of sensors increases.

Figure 8. Energy consumption of the current hybrid detection [7],[14],[20]
and lightweight hybrid detection systems

Proposition 1. Etotal >> E′
total, where Etotal and

E′
total are the total energy consumed by all IoT devices in

the hybrid intrusion detection scheme [7],[14] or [20] and our

lightweight hybrid intrusion detection scheme, respectively.

Proof:
Etotal(M,d)=

∑N
i=1

(ETXi
(M,d)+ERXi

(M)+EComputationi
)

N
and

E′
total(M,d)=

∑N
i=1

(E′
TXi

(M,d)+E′
RXi

(M)+E′
Computationi

)

N ,

where ETXi
is an energy cost to transfer M bits messages to a

distance d, ERXi
is the energy cost to receive M bit messages,

EComputationi
is the energy cost caused by the computation

process and N is the number of IoT devices.

The condition Etotal >> E′
total

′
is attributed to the fol-

lowing reasons: (i) With the help of Nash equilibrium, the

lightweight detection technique activates an anomaly detection

only if needed, leading to a decrease in the computation

overhead generated by the NN learning algorithm. Owing

to the fact that a low energy is required to build rules

related to attackers’ new signatures, we can easily claim

that EComputationi
> E′

Computationi
. (ii) In the current hy-

brid detection systems, a high number of intrusion messages

(where the signature is stored) is exchanged within a network,

specifically when the number of detected signatures is high,

leading to an increase in communication overhead. Therefore,

(ETXi
(M,d) + ERXi

(M)) >(E′
TXi

(M,d) + E′
RXi

(M)).

C. Security analysis

In this subsection, we analyze the security of the proposed

approach against the false positive rate and a list of cyber-

attacks.

(a) Security metrics

Proposition 2. S >> S′, where S and S′ are the false posi-

tive rate generated by the hybrid intrusion detection technique

[7],[14] or [20] and our lightweight hybrid intrusion detection

system, respectively.

Proof: S=
∑|Z|

i=1

∑|Ki|
j=1 G(zi, kj) +

∑|Z|
i=1

O(zi)
K

and S′=
∑|Z|

i=1

∑|Ki|
j=1 G′(zi, kj) +

∑|Z|
i=1

O′(zi)
K , where

Z={z1, . . . .., zn} is the number of IoT devices in a network

and K={ki1, . . . .., kim}is the number of IDS’ neighbors. If

an attacker does not launch an attack but the IDS categorizes

it as malicious, G(zi, kj)=1. Otherwise G(zi, kj)=0. O(zi) is

the number of IDS’ neighbors that sent a wrong notification

to IDS agent, i.e., claims that a well-behaved IoT device is a

malicious node.

The condition S >> S′ is held for the following reasons:

(i) in our lightweight hybrid detection system, O(zi) tends to

zero since only a trusted number of IoT devices participate in

the intrusion monitoring and decision process. This is unlike,

the hybrid detection technique [7],[14] and [20], in which all

nodes (trusted and no trusted nodes) activate simultaneously

their IDS agents. (ii) Reputation model. It is not wise to eject

the IoT device immediately when it is suspected to launch

a malicious anomaly since this anomaly could be simply

due to noise or an unreliable communication channel. To

decrease further the false positive rate, our reputation game

ranks the monitored IoT device into Legitimate, Suspect and

Malicious node according to its reputation score; therefore

G(zi, kj)> G′(zi, kj).

(b) Cyber attack

We analyze our security game framework to prove that

it is secured against attacks such as hello flood, sink hole,

black hole, sybil, wormhole, spoofed and altered informa-

tion and resource exhaustion attacks. Readers are referred to

[10],[21],[33] for the taxonomy of these attacks.

Hello flood, sink hole and black hole attacks. These

attacks generate a high Signal Strength Intensity (SSI) to lure

the target devices that are close to the destination. Afterward,

these attacks drop all packets received. Our IDS agent uses a

signature based detection as shown in Table 1 to monitor the

behaviors of neighboring IoT devices by analyzing the SSI and

Packets Dropping Rate (PDR). To detect this kind of threats,

each IDS agent monitors the SSI and PDR related to each

neighboring node. In case, the values of SSI and PDR exceed

certain predefined thresholds, TSSI and TPDR as explained

in Table 1, the monitored node is qualified as an attacker.

However these thresholds could vary over time and hence the

false negative may increase. In order to address this issue,

the proposed dynamic game launches the anomaly detection

technique to update these thresholds and builds the rule related

to each new attack’s pattern.
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Sybil attack. A Sybil node generates a set of fabricated

identities in order to lure the legitimate IoT devices. According

to [34], the main feature of this attack is the signal strength

distribution. The IDS agent which is embedded at each IoT

device analyzes the signal distribution of its neighbors by using

its signature based detection technique as shown in Table 1.

However, the normal patterns of signal distribution could vary

over time. In this case, the anomaly based detection is activated

by the proposed dynamic game in order to build new patterns

to be used by the signature based detection technique. This

is achieved when the equilibrium is reached as shown in Eq

(10).

Resource exhaustion attack. This threat aims to exhaust

the resources of legitimate IoT nodes, by requesting a con-

siderable number of tasks. To detect this attack, the IDS

monitors the, Total Number of Requests (TNR) by using

the signature based detection technique, as shown in Table

1. To increase the detection rate, the anomaly detection is

activated to detect the misbehavior patterns that are usually not

detected by signature-based detection technique. Furthermore,

this latter could generate a high number of false positives,

specifically when the number of resource exhaustion attacks

increases. Therefore, to decrease the false positive rate, a

reputation model is developed that aims to rank the monitored

IoT devices in an appropriate class, namely Normal, Suspect

or Malicious, according to their reputation scores.

Wormhole, Spoofed and altered information attacks.
These cyber threats are the most dangerous DoS attacks that

could target IoT devices. To detect these threats, the IDS

agent monitors the features PDR and Message Modification

Rate (MMR) and launches the signature based detection as

shown in Table 1. Therefore, in case the values of PDR

and MMR exceed certain predefined thresholds (TSSI and

TPDR), the monitored device could be qualified as wormhole,

or altered information attacks. Our security game updates

these thresholds by launching the anomaly based detection

technique as shown in Eq (10). When these attacks occur, the

anomaly detection technique could exhibit a certain number

of false positives. To decrease the false positive rate, our

reputation game is used to categorize the monitored device

in an appropriate class.

VI. CONCLUSION AND FUTURE WORK

Security for resource-constrained IoT devices is a chal-

lenging issue. In this paper, we proposed and designed a

lightweight anomaly detection technique, where a tradeoff

between detection accuracy, false positive rates, and energy

consumption is achieved using the Nash Equilibrium concept.
This latter determines the equilibrium state that allows the IDS

agent to activate its anomaly detection technique to detect new

attack’s signature. Furthermore, even by combining between

the anomaly and signature detection techniques, the number

of false positives is still no null. Thereby, to decrease further

the false positive rates a reputation model is proposed. We

analyzed the performance and demonstrated the viability of

our proposed approach in WSN using TOSSIM simulator.

According to the simulation results, we proved that our

lightweight anomaly detection approach required low energy

consumption to achieve high detection accuracy and low false

positive rates. This is unlike the current anomaly detection

techniques that require a high energy to exhibit a high de-

tection rate since these detection techniques are permanently

activated at each node (i.e. nodes do not switch to idle time).

As future research work, our goal, is to implement a part

of our solution in order to secure a wireless sensor network

composed of different low-power devices deployed in a smart

building. These devices would collect different information

(e.g., temperature, humidity, energy consumption, etc.) and

send them to a remote center for further analysis through a

gateway.
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