

D6.1

Initial Technical Integration and Validation Report

This deliverable provides the output of Task 6.1. It provides information about the integrated analysis of all software resources available and thereafter defines necessary interfaces to integrate components. An integration plan of the discrete framework's mechanisms and software components is also specified and documented. In addition to the integration plan, a testing and technical evaluation plan is provided.

Distribution level	PU	
Contractual date	<28.02.2018> [M14]	
Delivery date	<23.03.2018> [M15]	
WP / Task	WP6 / T6.1	
WP Leader	UBITECH	
Authors	Giannis Ledakis (UBITECH), Ruben Trapero (ATOS), Diego Rivera (MONT), Yacine Khettab, Ivan Farris (AALTO), Dallal Belabed (THALES), Cédric Crettaz (MAND), Jorge Bernal, Alejandro Molina (UMU), Rafael Marín Pérez (ODINS), Alie El-Din Mady (UTRC), Enrico Cambiaso (CNR), Ivan Vaccari (CNR)	
EC Project Officer	Carmen Ifrim carmen.ifrim@ec.europa.eu	
Project Coordinator	Softeco Sismat SpA Stefano Bianchi Via De Marini 1, 16149 Genova – Italy +39 0106026368 <u>stefano.bianchi@softeco.it</u>	
Project website	www.ANASTACIA-h2020.eu	

ANASTACIA has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement N° 731558 and from the Swiss State Secretariat for Education, Research and Innovation. This document only reflects the ANASTACIA Consortium's view. The European Commission is not responsible for any use that may be made of the information it contains.

Table of contents

P١	JBLIC SUMMARY 4					
1	Intro	oduct	tion	. 5		
	1.1	Aim	s of the document	. 5		
	1.2	2 Applicable and reference documents				
	1.3	Revi	ision History	. 5		
	1.4	Acro	onyms and Definitions	. 6		
2	Plat	form	Integration Overview	. 7		
	2.1	Soft	ware Integration Approaches	. 7		
	2.2	ANA	STACIA Integrated Framework Architecture	. 8		
	2.2.	1	The Envisioned Platform	. 8		
	2.2.	2	Integration Points	. 9		
	2.3	Deta	ailed Description of the Interfaces 1	11		
	2.3.	1	Interfaces for Policy Set-up Activity 1	12		
	2.3.	2	Interfaces for Policy Orchestration and Enforcement1	16		
	2.3.	3	Interfaces for Monitoring	18		
	2.3.	4	Interfaces for Reaction Activity 2	20		
	2.3.	5	Interfaces for Seal Creation	23		
	2.4	Tecł	nnical Integration Mechanisms And Process 2	24		
	2.4.	1	Using Docker for Integration	25		
	2.4.	2	Integration at Interface Level	26		
	2.4.	3	Code Level Integration - Working on the same components	28		
	2.4.	4	Shared Knowledge 2	29		
3	Plat	form	Implementation and Integration Planning	30		
	3.1	Mul	ti-Iteration/Release Plan	30		
	3.1.	1	1 st Platform Release and Validation Iteration	31		
	3.1.	2	Final Version of the Platform and Validation Iteration	33		
4	Plat	form	Deployment Overview	37		
5	Plat	form	Testing and Validation Plan	39		
	5.1	Unit	Testing	39		
	5.2	Test	ing for the Integrated Platform4	40		
	5.2.	1	Integration Tests	41		
	5.3	Vali	dation for the Integrated ANASTACIA Platform4	49		
	5.3.	1	The Product Quality Model5	50		
	5.4	ANA	STACIA Development Lifecycle5	56		

5.4.2 Continuous Integration	56
	56
5.4.3 Source Code Quality Control	58
5.4.4 Issues Management	59
6 Conclusions And Next Steps	61
References	62

Index of figures

Figure 1. ANASTACIA architecture – Interface View	. 10
Figure 2. Sample Configuration of Swagger on a Spring boot application	. 27
Figure 3. Sample of Swagger UI	. 27
Figure 4. ANASTACIA project group in GitLab	. 29
Figure 5. The ANASTACIA development lifecycle combines the V-model with short, concurrent developm cycles	
-igure 6. The ANASTACIA Milestones as part of the development plan	. 31
igure 7. A product quality model view based on the ISO/IEC 25010:2011 standard	. 50
-igure 8. Release Management using GitLab	. 58
-igure 9. Issues Management for ANASTACIA components - Labels	. 60
-igure 10. Aggregated issues from all ANASTACIA components	. 60

Index of tables

Table 1. Policy Editor Tool -> Interpreter H2M (H2MI)	12
Table 2. Security Orchestrator -> Interpreter M2L (M2LI)	13
Table 3. Policy Interpreter-> Security Orchestrator	13
Table 4. Interpreter -> Security Enabler Provider (SEPPI)	14
Table 5. Orchestrator -> Reaction definition (RCI)	15
Table 6. Security Orchestrator <-> SDN controllers (SDNI)	16
Table 7. Security Orchestrator <-> NFV MANO modules (NFVI)	17
Table 8. Security Orchestrator <-> IoT controllers (IOTI)	18
Table 9. Orchestrator -> Monitoring definition (MCI)	19
Table 10. Monitoring Agents-> Monitoring Module (MDR)	19
Table 11. Monitoring -> Reaction definition (MVI)	20
Table 12. Reaction -> User/System Administrator definition (SAWI)	21
Table 13. Reaction -> Orchestrator definition (CSI)	22
Table 14. Reaction -> Seal Manager definition (SMMI)	23
Table 15. ANASTACIA integration mechanisms	24

Table 16. ANASTACIA components' status for first release (M19)	. 31
Table 17. ANASTACIA components' status for final release (M36)	. 34
Table 18. Unit Test documentation template	. 40
Table 19. Identified and Planned Integration Tests	. 41
Table 20. Technical Characteristics and Sub-characteristics relevant to ANASTACIA technical validation	. 51
Table 21. Quantitative Evaluation Metrics selected for the ANASTACIA framework	. 52
Table 22. KPIs per component (part 1/2)	. 53
Table 23. KPIs per component (part 2/2)	. 54

PUBLIC SUMMARY

The document presents the integration and technical testing plan of the ANASTACIA framework, that is the outcome of the task T.6.1. The integration plan has been created using ANASTACIA Deliverable D1.3 as starting point and, by identifying and specifying the necessary integration points between components, and also by constructing the integration approach that will be followed. The supported functionalities that each of the releases of ANASTACIA framework shall provide were identified, allowing the consortium to make proper scheduling of both development and integration actions.

Analysis of existing models and standards has been done for the preparation of the technical validation of ANASTACIA framework. Based on this analysis, the document provides initial definition of metrics and KPIs for the technical validation of ANASTACIA as framework and also at component level. Also, the definition of integration testing as part of ANASTACIA was provided in this document, along with integration test that have been identified so far.

Finally, the suggested development cycle and the tools that can be used to support both the collaborative development and the integration of the discrete mechanisms have been provided. The document presents also the selection of GitLab as the basic tool that will help transforming the development and integration plans to specific actions.

1 INTRODUCTION

1.1 AIMS OF THE DOCUMENT

In this document we provide the output of the efforts of creating the integration, testing and technical evaluation plan of ANASTACIA framework. For the creation of the integration plan technical partners collaborated in many different occasions, especially for the definition of the necessary integration points between components, but also for a common approach regarding testing and evaluation. The starting point for the integration plan was ANASTACIA Deliverable D1.3 and the work done in task T1.3: Architectural Design, continued with the specification and development of the mechanisms described in WP2, WP3, WP4 and WP5. The goal of creating the integration plan is to support the development by guiding the integration of the discrete mechanisms and software components, with the agreement on identified interfaces, and the usage of selected tools. Using these tools (especially GitLab) the actual integration will be carried in the next months based on two major releases when the overall framework will be tested and evaluated. Finally, in this document the development lifecycle scheme proposed by ANASTACIA is presented and includes source code management, continuous integration, source-code quality control, release management and ticketing.

1.2 APPLICABLE AND REFERENCE DOCUMENTS

This document refers to the following documents:

- Grant Agreement N°731558 Annex I (Part A) Description of Action
- D1.2 User-centred Requirement Initial Analysis
- D1.3 Initial Architectural Design

1.3 REVISION HISTORY

Version	Date	Author		Description	
0.1	14.12.2017	Giannis Ledakis (UBI)		Skeleton of expected contents	
0.4	15.01.2018	Giannis Ledakis (UBI)		Draft content in sections 2, 3 and 5	
0.7	22.02.2018	Giannis (UBI)	Ledakis	First draft version with sample on section that required input from partners	
0.7.4	28.02.2018	ALL		First integrated draft	
0.8	12.03.2018	Giannis Ledakis (UBI)		Updated version based on comments received in the first draft	
0.8.4	16.03.2018	ALL		Second integrated draft	
0.9	19.03.2018	Giannis Ledakis		Version released for ATOS review	
0.9.1	21.03.2018	Ruben Trapero (ATOS)		Revised version	

1.4 ACRONYMS AND DEFINITIONS

Acronym	Meaning	
ΑΡΙ	Application Programming Interface	
СІ	Continuous Integration	
DSPS	Dynamic Security and Privacy Seal	
DTLS	Datagram Transport Layer Security	
ESB	Enterprise Service Bus	
ETSI	European Telecommunications Standards Institute	
HSPL	High Security Policy Language	
ΙοΤ	Internet of Things	
MANO	Management and Orchestration	
ММТ	Montimage Monitoring Tool	
MSPL	Medium Security Policy Language	
MTTR	Mean Time to Recovery	
NFV	Network Function Virtualization	
OS	Operating System	
REST	REpresentational State Transfer	
RPC	Remote Procedure Call	
SDN	Software Defined Networking	
SIEM	Security Information and Event Management	
UI	User Interface	
VM	Virtual Machine	
XACML	eXtensible Access Control Markup Language	

2 PLATFORM INTEGRATION OVERVIEW

A modern software system like ANASTACIA is a combination of different subsystems cooperating so that the overall framework is able to deliver the needed functionalities. These subsystems need to be integrated in such a way that they can support common business processes and data sharing across whole framework. An effective integration of an application should provide efficient, secure and reliable data exchange between multiple components. However, software Integration deals not only with computer network discipline but also with other issues like the technological diversity of the components used in ANASTACIA, including different communication protocols or messaging format (such as RESTful, XML-RPC, etc.) or even issues with authentication and authorization. In the following section the different integration methods that have been examined are provided, followed by the key elements of ANASTACIA integration.

2.1 SOFTWARE INTEGRATION APPROACHES

As integrations of multi component systems are an important part of software development, several different methods of integration have been suggested. A few of the most important ones are presented by K. Hammer and T. Timmerman in the "Fundamentals of Software Integration" [2] and are shortly provided here:

- "Vertical Integration": The process of integrating subsystems according to their functionality by creating functional entities. This method provides a quickly performed integration by involving only the necessary vendors and therefore this method is cheaper in the short term. However, the cost of integration can be significantly higher than the one seen in other methods, since in case of new or enhanced functionality, the only possible way to scale the system is to implement a new entity. It is not possible to reuse subsystems in order to have new or enhance existing functionalities.
- "Star Integration": The process of integrating subsystems, where each system is interconnected to each of the remaining subsystems. By observing from the perspective of the subsystem, which is being integrated, the connections are like a star. The cost of using this method varies due to the interfaces which the subsystems are exporting. If the subsystems are exporting heterogeneous or proprietary interfaces, the integration costs can rise significantly. The needed integration time and costs of the systems increase exponentially when adding new subsystems. This method often seems preferable, due to the extreme flexibility of the reusability.
- "Horizontal Integration": The process of integrating subsystems, where a subsystem is exclusively
 responsible for the communication between other subsystems. Using this method, the number of
 interfaces is only one per subsystem. This interface connects directly to this type of integration. It is
 capable of translating the interface into another interface. This cuts the costs of integration and
 provides extreme flexibility. In addition, it is possible to entirely replace one subsystem with another
 one, which provides similar functionality but exports different interfaces, all this completely
 transparent for the rest of the subsystems. If the cost of integration or the
 cost of shifting responsibility over business logic is thought to be avoided, then the horizontal scheme
 can be misleading.
- "Enterprise Application Integration": The process of integrating systems that usually stipulate an application-independent (or common) data format. This method usually provides a data transformation service in order to convert between application-specific and common formats. This is done in two steps: first, the adapter converts information from the application's format to the common format and second, semantic transformations are applied on this (converting zip codes to city names, splitting/merging objects from one application into objects in the other applications, and so on).

Of course, many other approaches exist and combinations of the different approaches are commonly used depending on the actual needs and facts of the integrated systems. Another differentiation between architectural principles is the level of coupling of the components, thus if loose coupling or tight coupling is used. Loose coupling in broader distributed system design is achieved by the use of transactions, queues provided by message-oriented middleware, and interoperability standards¹.

To achieve loose coupling in a complete way there are many characteristics that should be provided by a system and the components that this system includes. Some of them are the following, as suggested by [6]

- physical connections via mediator,
- asynchronous communication style,
- simple common types only in data model,
- weak type system,
- data-centric and self-contained messages,
- distributed control of process logic,
- dynamic binding (of service consumers and providers),
- platform independence,
- business-level compensation rather than system-level transactions,
- deployment at different times,
- implicit upgrades in versioning.

The usage of an Enterprise Service Bus (ESB) middleware became a popular way to achieve many of the desired characteristics of loose coupling. However, over engineered and mispositioned ESBs can also have the contrary effect and create undesired tight coupling and a central architectural hotspot².

For this reason, in ANASTACIA we try to combine the desired characteristics of the different approaches and create an integration that is based on both direct communications between components (Star architecture) and asynchronous, loosely-coupled integration using a common message broker that is scalable by design³ (Apache Kafka). It is important to clarify that this approach helps us on achieving characteristics of event-driven architecture and enable ANASTACIA for the proper supporting of production, detection, consumption of, and reaction to events.

2.2 ANASTACIA INTEGRATED FRAMEWORK ARCHITECTURE

2.2.1 The Envisioned Platform

An important role for the decision regarding the architectural approach followed in ANASTACIA was the clarification of the platform vision regarding the way that the ANASTACIA as whole will be used. Based on the analysis of initial requirements and the use cases reported in Deliverable D1.2, in Deliverable D1.3 five main activities to be supported by the platform were identified, with each of them utilizing specific components. For the integration planning it is important to clarify how each of these components interconnects to achieve these identified activities that are shortly presented below;

• Security policy set-up activity. This is the initial process triggered once a security policy has been defined by the user. In this process the policy has to be configured in the platform in order to be enforced. The interpretation of the security policy claims, the configurations required to monitor the security controls associated to a policy or the definition of thresholds to identify policy violations, are some activities carried out by this process.

³ https://www.confluent.io/blog/apache-kafka-for-service-architectures/

¹ Pautasso C., Wilde E., <u>Why is the Web Loosely Coupled?</u> - http://www2009.eprints.org/92/1/p911.pdf

² http://bulgerpartners.com/how-loosely-coupled-architectures-are-helping-the-modernization-of-legacy-software/

- Security policy orchestration activity. Once the policy has been defined, it is necessary to enforce the controls specified within the policy. To orchestrate the selected IoT/SDN/NFV-based security enablers, appropriate interactions with the relevant management modules are required.
- Security monitoring activity. In this process the monitoring information is extracted from the devices through monitoring agents and according to the security controls interpreted from the security policy. In this activity, the monitoring data is filtered and aggregated in order to carry out its analysis and the detection of anomalies.
- Security reaction activity. In this process the detected anomalies are evaluated to design counter measures in order to mitigate the effects of attacks and potential threats.
- **Dynamic security and privacy seal creation activity**. In this process, relevant information about detected threats, monitored information is evaluated to create a seal that determine the level of security guaranteed/offered by an IoT platform.

The aforementioned activities, along with their sub-activities and resulting architecture of the platform are described with detail to the deliverable D1.3[4]. In this deliverable the architecture will be presented in order to identify and provide technical details about the needed integration points between the components that will allow the platform integration.

2.2.2 Integration Points

What is extremely important for the integration activities is the identification of the integration points. Due to this importance, the needs for interfaces between the components have been identified early and there has been effort on the concrete description of the interfaces in parallel with the architecture discussions. For this reason, the main interfaces have been identified in D1.3. However, in this deliverable we provide updates (MDR interface) and description of the interfaces with technical details that would lead to the realization of the ANASTACIA architecture by a unified platform.

Figure 1 shows the ANASTACIA architecture which includes the interfaces between modules, and then more details are provided for each of these interfaces.

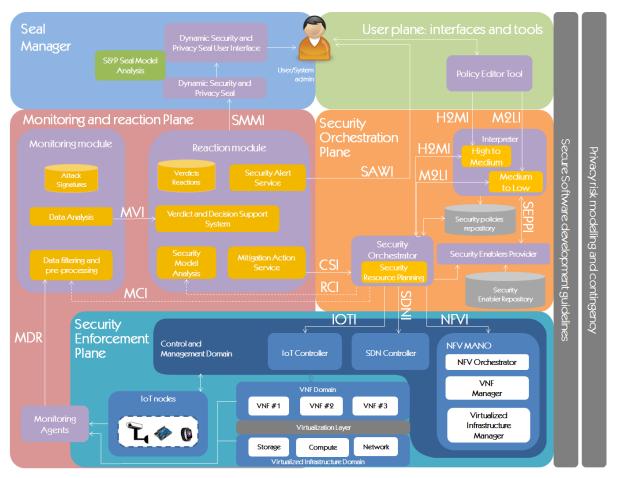


Figure 1. ANASTACIA architecture – Interface View

More specifically the interfaces introduced that were introduced in D1.3 and extended in this deliverable are the following:

- **High to Medium interface (H2MI):** Interface between the User Plane and the Orchestration Plane used for translating and refine policies. H2MI provide information at a high level of granularity. This interface is also used internally by the Security Orchestrator to get details about the capabilities that needs to be enforced within the IoT platform.
- Medium to Lower interface (M2LI): Interface between the User Plane and the Orchestration Plane used for translating and refine policies. M2LI provides a lower level of granularity than the information provided by H2MI. This interface is also used internally by the Security Orchestrator to get details about the capabilities that needs to be enforced within the IoT platform.
- MSPL Reception Interface (MRI): This interface is used by the policy interpreter to send the MSPL to the Security Orchestrator.
- Monitoring Configuration Interface (MCI): This interface is used from the security orchestrator in order to configure monitoring parameters.
- **Reaction Security Configuration Interface (RCI)**: Interface between the Orchestration plane and the Monitoring and Reaction planes, used for the configuration of monitoring and reaction activities.
- **IoT-oriented Security Enforcement Plane Interface (IOTI):** This interface is used from the security orchestrator in order to configure the IoT controller.
- **SDN-oriented Security Enforcement Plane Interface (SDNI):** Interfaces between the Security Orchestrator and the SDN controllers. It provides the connectivity required among the Network Virtual Functions, and some basic security reactions.

- **NFV-oriented Security Enforcement Plane Interface (NFVI)**: This interface allows managing the security VNFs via the ETSI-oriented NFV MANO modules. The Security Orchestrator can request the enforcement of the security VNFs according to the configurations generated by the policy refinement process.
- Security Alerts and Warnings Interface (SAWI): Interface between the Reaction module and the user plane which is used for the notification to the User/System admin about relevant information regarding alarms, countermeasures, etc.
- **Countermeasures Suggestions Interface (CSI)**: Interface between the Reaction module and the Orchestrator to exchange information about the countermeasures to be enforced in the IoT platform in order to react to certain incident.
- **Monitoring Verdicts Interface (MVI)**: Interface between the Monitoring module and the Reaction module used for exchanging information about detected incidents.
- Security Enabler Provider Plugin Interface (SEPPI): Interface exposed by the Security Enablers Provider. It is used to get an appropriate enabler plugin during the lower policy refinement done at the Policy Interpreter, as well as providing the list of available security enablers.
- Seal Manager Metadata Interface (SMMI): The interface provides the requested information to evaluate the security and the privacy in a real-time fashion. The security and privacy policies defined by the user are stored inside the policies repository and an interface is available to retrieve and set them from the seal manager.

In the following section, the detailed technical description of all the identified interfaces is presented based on bilateral and general discussions between the technical partners.

2.3 DETAILED DESCRIPTION OF THE INTERFACES

This section gathers information about the interfaces required for the implementation of the integrated solution of ANASTACIA by defining the communication between the components created in WP2-3-4-5.

The following subsections describe these interfaces (organized per activity) by detailing the following information:

- **Description**: describes the purpose of the interface
- **Component providing the interface**: describes the component that is offering the described interface.
- **Consumer components**: describes the components that are using the described interface.
- Type of interface: REST, XML-RPC, GUI, Java API etc.
- Input data: describes how data that is required by the described interface (e.g.: Methods or Endpoints, values and parameters of the interface)
- **Output data**: describes the data that is returned by the described interface (e.g.: the returned data of methods or REST call)
- **Constraints:** Any security or authentication related topics regarding this interface, specifically the need to use a secure transfer protocol. Also, any other constraints (e.g. specific prerequisites, data-types, encoding, transfer rates) which apply to the interface.
- State: Synchronous/Asynchronous, Stream
- **Responsibilities:** Partner that is responsible for the implementation and usage of the interface

We have to mention that the identified interfaces, their methods and parameters are part of ongoing development and collaboration between partners, so future changes could be required. The final version of the interfaces will be documented in deliverable D6.4 - Final Technical integration and validation Report.

2.3.1 Interfaces for Policy Set-up Activity

The following tables describe the interfaces involved in the set-up of a new policy, comprising the interpretation of a security policy set-up at the editor, involving the interfaces H2MI (Table 1), M2LI (Table 2), SEPPI(missing reference to table), and the configuration of the monitoring and reaction modules which involve interfaces MCI (Table 9) and RCI (Table 5). These tables extend and update the information gathered in D1.3.

2.3.1.1 High to Medium Interface

		ool -> Interpreter H2M (H2MI)		
High to Medium interface (H2MI)				
Description	The interface allows requesting a policy refinement from a High level Security Policy (HSPL) to a Medium level Security Policy (MSPL), as well as to request a policy enforcement from a HSPL (avoiding to manually request M2L and MRI interfaces).			
Component providing the nterface	Policy Interpreter			
Consumer components	Policy Editor Tool			
ype of Interface	REST			
itate	Synchronous			
nput data / Dutput Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method	
	h2mrefinement h2menforcement	JSON data with the HSPL policy, codified in XML. A suitable list of enablers could be also provided.	JSON data with the MSPL policies and a list of candidate security enablers. Policy enforcement result.	
Constraints	Notice the JSON data parameters could contains more than the policy and the enablers, like matching between devices address and its human readable names.			
Responsibilities	o UMU			

2.3.1.2 Medium to Lower Interface

Medium to Lower interface (M2LI)				
Description	The interface allows to request a policy refinement from a Medium Level Security Policy (MSPL) to a specific enabler configuration/task			
Component providing the interface	Policy Interpreter			
Consumer components	Policy Editor Tool Security Orchestrator			
Type of Interface	REST			
State	Synchronous			
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method	
	m2ltranslate	JSON data with MSPL policy codified in XML and the enabler name to enforce it.	Enabler's specific Security control configuration/Task.	
Constraints	M2LI uses the SEPPI interface in order to obtain the enabler plugin and performs the M2L translation.			
Responsibilities	o UMU			

Table 2. Security Orchestrator -> Interpreter M2L (M2LI)

2.3.1.3 MPSL Reception Interface

Table 3. Policy Interpreter-> Security Orchestrator			
MSPL Reception Interface (MRI)			
Description	This interface can be used by the policy interpreter to send the MSPL to the Security Orchestrator.		
Component providing the interface	Security Orchestrator		

Consumer components	Policy Interpreter				
Type of Interface	REST				
State	Synchronous				
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method		
	Load_MSPL	JSON data with MSPL policy codified in XML and the candidate security enablers.	Acknowledgement of the reception.		
Constraints	None				
Responsibilities	AALTOUMU				

2.3.1.4 Security Enabler Provider Plugin Interface

Table 4. Interpreter -> Security Enabler Provider (SEPPI)			
Security Enabler Provider Plugin Interface (SEPPI)			
Description	The interface allows requesting for a plugin which implements the MSPL to Enabler translation.		
Component providing the interface	Security Enabler Provider		
Consumer components	Policy Interpreter		
Type of Interface	REST		
State	Synchronous		
Input data / Output Data	Methods or endpoints of the interfaceParameters of the method methodReturn MeturnValues of the method		

	getplugin getenablers	Enabler´s name Identified capabilities	Enabler's MSPL->Security control translator software package (Software package which implements the MSPL to Lower translation) A list of candidate Enablers.
Constraints	The software must implement	ent the method getConfigura	tion()
Responsibilities	 UMU (getplugin) THALES (getenablers) 		

2.3.1.5 Reaction Security Configuration Interface

Table 5. Orchestrator -> Reaction definition (RCI)			
Reaction Security Configuration Interface (RCI)			
Description	This interface allows the Security Orchestrator to provide the Security Model-related data to the Reaction Module. In general terms, this information will be composed by the Capabilities of the Security Policy and the available countermeasures on the network to react to a detected security issue.		
Component providing the interface	Security Model Analysis (Reaction Module)		
Consumer components	Security Orchestrator	Security Orchestrator	
Type of Interface	REST		
State	Synchronous		
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	setConfiguration	The list of enforcing capabilities and list of available countermeasures.	Simple acknowledgement in the reception of the request (e.g., HTTP response status code)
Constraints	Once the Security Orchestrator has identified the capabilities expressed in the security policy, the Security Orchestrator will inform the Reaction module about these capabilities in order to correctly configure the countermeasures assessment		

	process. The feedback received from the Security Orchestrator might also be used to provide enhanced information to the Seal Management Plane of the ANASTACIA platform.	
Responsibilities	 THALES AALTO UTRC 	

2.3.2 Interfaces for Policy Orchestration and Enforcement

The following interfaces are used for the enforcement of security policies in IoT devices. Three possible ways of orchestrating or enforcing a policy can be used depending on the interface used:

- Policy enforcement using SDN controllers through the SDNI (Table 6)
- Policy enforcement using NFV-MANO modules through the NFVI (Table 7)
- Policy enforcement using IoT controllers through the IOIT (Table 8)

2.3.2.1 SDN-oriented Security Enforcement Plane Interface

Table 6. Security Orchestrator <-> SDN controllers (SDNI)			
SDN-oriented Security Enforcement Plane Interface (SDNI)			
Description	This interface allows managing the SDN networking configuration via the SDN controller(s). The Security Orchestrator can request the enforcement of the SDN traffic flow rules received as outcome of the policy refinement process.		
Component providing the interface	SDN controller(s) : ONOS		
Consumer components	Security Orchestrator		
Type of Interface	REST		
State	Synchronous		
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	Flow_dropping Flow_mirroring Flow_forwarding	JSON with the list of parameters required to manage the flows	JSON with method execution results

Constraints	Regarding ONOS north-bound APIs, authentication based on user and password is required for issuing commands. Additional security features can be enabled.
Responsibilities	o AALTO

2.3.2.2 NFV-oriented Security Enforcement Plane Interface

Table 7. Security Orchestrator <-> NFV MANO modules (NFVI)			
NFV-oriented Security Enforcement Plane Interface (NFVI)			
Description	This interface allows to manage the security VNFs via the ETSI-oriented NFV MANO modules. The Security Orchestrator can request the enforcement of the security VNFs according to the configurations generated by the policy refinement process.		
Component providing the interface	NFV MANO (Management and Orchestration) modules: OSM (under evaluation)		
Consumer components	Security Orchestrator		
Type of Interface	REST		
State	Synchronous		
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	Onboard/export Virtual Network Function Descriptor (VNFD)/ Network Service Descriptor (NSD) Create/Delete Network	Data packages defining NSD/VNFD. Information about the NS to manage	Method execution results
	Service (NS) Execute configuration primitives on Network Services.		
Constraints		d on user and password is required is required to the security features can be	_

2.3.2.3 IoT-oriented Security Enforcement Plane Interface

Table 8. Security Orchestrator <-> IoT controllers (IOTI)			
IoT-oriented Security Enforcement Plane Interface (IOTI)			
Description	This interface allows managing the configuration of IoT nodes via specific IoT controllers. The Security Orchestrator can request the enforcement of the security controls within the IoT nodes according to the configurations generated by the policy refinement process.		
Component providing the interface	IoT controllers		
Consumer components	Security Orchestrator		
Type of Interface	REST		
State	Synchronous		
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	device/device_id bootstrapping	iot_resource PEMK key	IoT resource values/result of the operation (turn off, disable radio, bootstrapping), in plain text
Constraints	The PEMK (PaC-EP Master Key) key could be acquired previously through an AAA architecture.		
Responsibilities	o UMU/OdinS		

2.3.3 Interfaces for Monitoring

The following tables describe the interfaces involved in the Monitoring processes. First, the configuration of the configuration of the monitoring is provided by MCI interfaces (Table 9) and the collection of monitoring data is described in the Monitoring Data Receiver (MDR) set of interfaces (Table 10).

2.3.3.1 Monitoring Configuration Interface

Table 9. Orchestrator -> Monitoring definition (MCI)			
Monitoring Configuration Interface (MCI)			
Description	This interface allows configuring the Monitoring Module from the Security Orchestrator. It is intended to provide the required parameters to refine the detection of potential threats on the network.		
Component providing the interface	Data Filtering Component (Monitoring Service)		
Consumer components	Security Orchestrator		
Type of Interface	REST		
State	Synchronous		
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	setAnalysisParams	The list of enforcing capabilities and enforced security policies.	Simple acknowledgement in the reception of the request (e.g., HTTP response status code)
Constraints	Once the Security Orchestrator has identified the capabilities expressed in the security policy, the SO will inform the Monitoring module about these capabilities in order to correctly configure the monitoring agents		
Responsibilities	UBITECHAALTO		

Table 9. Orchestrator -> Monitoring definition (MCI)

2.3.3.2 Monitoring Data Receiver

	Table 10. Monitoring Agents-> Monitoring Module (MDR)
Monitoring Data Re	eceiver (MDR)
Description	This integration point is needed in order to allow the Monitoring Agents to provide their output to the Monitoring Module through the Data Filtering Component. It is not a single interface but a collection of Kafka topic ⁴ that will be used for the collection of the data from a diverse set of monitoring agents that have or will be

⁴ https://kafka.apache.org/documentation/

		iration. A Kafka topic is wher ata) and pulled from a consur	
Component providing the interface	Kafka Message Broker		
Consumer components	Data Filtering Component (Monitoring Service)		
Type of Interface	Type of Kafka Topic depends of the Monitoring Agent		
State	Asynchronous		
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	One topic per each monitoring agent will be used	N/A (topic values depended on the monitoring agents)	N/A (topic values depended on the monitoring agents)
Constraints	Each monitoring agent should be able to connect to the Kafka Broker		Kafka Broker
Responsibilities	 UBITECH Partners providing mon 	itoring agents (for creating th	ne needed producer)

2.3.4 Interfaces for Reaction Activity

The following interfaces are used for exchanging relevant data required for the fulfilment of a security policy within an IoT platform. This includes:

- The notification of detected incidents between the Monitoring and the Reaction modules through the MVI (Table 11)
- The notification of alerts and countermeasures from the Reaction module to the User/System admin through the SAWI (Table 12)

2.3.4.1 Monitoring Verdicts Interface

Table 11. Monitoring -> Reaction definition (MVI)

Monitoring Verdicts Interface (MVI)	
Description	This interface is intended to provide the required monitoring information from the Monitoring to the Reaction Module. The transferred data is mainly composed of the verdicts of the security properties tested on the network.
Component providing the interface	Verdict and Decision Support System (Reaction Module)

Consumer components	Data Analysis (Monitoring N	Лodule)			
Type of Interface	RPC or REST	PC or REST			
State	Asynchronous				
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Val method	ues o	f the
	backlogBolt	JSON including: alarmID, BacklogID, AlarmEvent. Alarm event containing related to the incident detected.	None		
Constraints	None				
Responsibilities	MONTATOS				

2.3.4.2 Security Alerts and Warnings Interface

	Table 12. Reaction -> User/System Administrator definition (SAWI)
Security Alerts and	Warnings Interface (SAWI)
Description	This interface will transfer the alerts and warnings from the Reaction Module to the end-user interfaces. It is designed as a communication channel between the Reaction Module and the ANASTACIA User Plane.
Component providing the interface	Security Alert Service (Reaction Module)
Consumer components	End-user interface
Input data / Output Data	 Several options were considered; 1) Database (relational, or noSQL, to be evaluated in function of the data flow), directly accessed from the user plane interfaces 2) JSON/XML format passed to the user plane 3) Syslog format passed to the user plane

State	-	in order to avoid complexity ed during the development o	
Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	Specific tables on the database containing the information	The set of detected security issues (for raiseAlert), and the applied countermeasures (for informReaction)	None
Constraints	None		
Responsibilities	 ATOS MONT CNR UTRC 		

2.3.4.3 Countermeasures Suggestions Interface

Table 13. Reaction -> Orchestrator definition (CSI)

Countermeasures S	Suggestions Interface (CSI)
Description	This interface was conceived to transmit the set of suggested countermeasures from the Reaction module to the Security Orchestrator
Component providing the interface	Security Orchestrator
Consumer components	Mitigation Action Service (Reaction Module)
Type of Interface	REST (MSPL)
State	Asynchronous
Input data / Output Data	Methods or endpoints of Parameters of the method Return Values of the method

	informCountermeasures	A list of the possible countermeasures to implement	A MSPL based file containing details on mitigation actions to be deployed with all required information. Some information can be the devices affected (IPs, subnet) the attack to mitigate, and other information that is currently being defined.
Constraints	format to inform the set of	n standards, this interface is in countermeasures that will b eliable communication is cor	be applied on the network.
Responsibilities	AALTOATOS		

2.3.5 Interfaces for Seal Creation

2.3.5.1 Seal Manager Metadata Interface

The following interface SMMI (Table 14) is used for the exchange of the relevant data that the seal manager needs in order to create the Dynamic Security and Privacy Seal.

	Table 14. Reaction -> Seal Manager definition (SMMI)
Seal Manager Meta	data Interface (SMMI)
Description	The interface provides the requested information to evaluate the security and the privacy in a real-time fashion. The security and privacy policies defined by the user are stored inside the policies repository and an interface is available to retrieve and set them from the seal manager.
Component providing the interface	Dynamic Security and Privacy Seal
Consumer components	Security Alert Service, Security Model Analysis
Type of Interface	Usage of STIX/TAXII (Structured Threat Information Expression and Trusted Automated eXchange of Indicator Information). Alternative options considered are he direct access to mysql database or is using Kafka broker and JSON format
State	Asynchronous

Input data / Output Data	Methods or endpoints of the interface	Parameters of the method	Return Values of the method
	computeSecuritySeal	TO BE DEFINED	none
Constraints	TO BE SPECIFIED		
Responsibilities	 ATOS MAND MONT 		

2.4 TECHNICAL INTEGRATION MECHANISMS AND PROCESS

As it was shown in the architecture diagram of Figure 1 and in the explained integration approach, ANASTACIA Platform consists of (1) components responsible for processing input data provided by the monitored streams, (2) components that are responsible for making decision and reaction and (3) components that provide useful information to the end user. All these components are integrated both using direct communications between components (Star architecture) and asynchronous, loosely-coupled integration using a common message broker when it is needed.

Table 15. ANASTACIA integration mechanisms

	Multiple Facets Integration			
At Deployment Level	Configuration of components' deployment using Docker compose			
	Dedicated container registries using Gitlab			
At Interfaces Level	Documentation of Interfaces using Swagger			
At Code Level	Dedicated code repositories using Gitlab			
At Knowledge Level	Dedicated folder for collaboration on the shared repository of consortium			
	Usage of Slack			

For the technical integration in ANASTACIA we need many different components to be deployed and communicate using dedicated interfaces or the common message broker. For achieving this we are using Docker Compose⁵ files. Docker Compose is a tool for defining and running multi-container Docker applications, based on a YAML file that is used to configure application's services. Then, with a single command, all services can be created and started using the configuration file. Following this approach doesn't mean that all components of ANASTACIA should be containerized and deployed using Docker. Some services may still be provided from a centralized point or through dedicated physical or virtual machines. What is managed through Docker compose configuration file (and by respecting some development guidelines) is the way that all components are possible to be deployed and communicate.

In order to make the whole integration flow to work based on Docker Compose in an autonomous and continuous way for ANASTACIA, we will try to create Docker based container images for the components developed, whenever this possible. In comparison to virtual machine that needs to include infrastructure

⁵ https://docs.docker.com/compose

configuration and the whole OS, the containers image is a lightweight, stand-alone, executable package that includes everything needed to run a piece of software, including the code, a runtime, libraries, environment variables, and configuration files. A container is a runtime instance of an image—what the image becomes in memory when actually executed. In comparison to a Virtual Machine (VM) that is completely isolated, a container is partially isolated from the host environment, as it uses the kernel calls and commands of the host OS, but accessing host files and ports is possible only if configured to do so.

Images are created using Docker and are possible to be configured using Dockerfile. A Dockerfile contains instructions on how to create the desired image based on pre-existing images. More information regarding the creation process is provided in section 2 that follows.

The pre-existing images can be stored and retrieved from image repositories called Docker registries. Such a Docker Registry is used for ANASTACIA and is a stateless, highly scalable server-side application that allows storing and distributing Docker images. It works similar to Git, as collaborators can login and then push or pull the images that they or other partners are creating.

The configuration of the multiple available components of the platform that are communicating through the interfaces (mostly REST) can be helped with Docker compose files, through the usage of Environmental Variables for configuration. Most important parameters that are usually needed for this action are service urls, ports or any other information needed for the acknowledgment and configuration between services. With environmental variables existing in each Docker compose based deployment, the service developer shall utilize the available variables at code level in order to avoid the hardcoding of parameters that make applications difficult to deploy and, in the end, develop and test a project with many different partners in remote locations, like ANASTACIA.

2.4.1 Using Docker for Integration

Dockerizing an application is a very diverse procedure and multiple approaches can be followed, for this reason dedicated guidelines and examples have been shared among the technical partners.

First step for collaborative working was that each partner needs to join the ANASTACIA project page in GitLab⁶, that will be used for the hosting of private code and container repositories, as well tools for the support of CI activities. For hosting integration related material of the whole framework, as docker-compose.yml files or the needed docker images⁷, a project called framework has been created.

2.4.1.1 Creating Docker Images for components

An application may be "dockerized" by using a variety of approaches. For the full scope of possibilities refer to the official documentation also given in the appendix. Here we will cover the most common guidelines:

An application may depend upon multiple components. A LAMP stack for example needs at the minimum a MySQL and Apache Web Server. A single container can contain the whole stack, or a separate container for each component may be used. Using a single container is generally easier, while using multiple containers is cleaner. Each partner may dockerize components as needed, with some basic suggestions like using separate containers for databases, web applications and web servers. If a lightweight server is used a single container can be used, like the case of Spring boot applications.

For dockerizing an application, a Dockerfile is needed. The Dockerfile contains instruction on how to construct the instance of an image (called container). The Dockerfile contains directives like:

⁷ registry.gitlab.com/anastacia-project/framework

⁶ <u>https://gitlab.com/anastacia-project</u>

- defining a base image to be used (e.g. Ubuntu 16). ANASTACIA developer can login and use ANASTACIA registry order to re-use the images already created as base images, by using the command (FROM registry.gitlab.com/ANASTACIA-project/framework/<image_name>:tag)
- adding local files to the file system of the container
- commands to be executed upon initialization of the container (e.g. packages to be installed)
- Ports to be exposed
- Commands that launch the applications

2.4.1.2 ANASTACIA Docker Registry usage

A Docker registry has been setup for the purposes of ANASTACIA development using Gitlab. Developers that want to push an image to the repository should first tag it with the repository and then push it using the following commands.

\$ docker login registry.gitlab.com

\$ docker build -t registry.gitlab.com/ANASTACIA-project/framework/<image_name>:<tag> .

\$ docker push registry.gitlab.com/ANASTACIA-project/framework/<image_name>:<tag>

where:

- *image_name*: the name of the image. Typically, this is the same as the local image name.
- *tag:* Optional as parameter but need to properly support the continuous integration workflow. It is used for creating versions of the same image. For the first iteration version 0.1 will be used as tag for all images. Also, if you not specify the tag, the docker will automatically set the tag latest.

Similarly, an image can be pulled by executing:

\$ docker pull registry.gitlab.com/ANASTACIA-project/framework/<image_name>:<tag>

2.4.2 Integration at Interface Level

For the better coordination of the development of the interfaces that are used by the Interfaces we can use Swagger. This way each partner will be responsible to provide the appropriate documentation for the interface usage and this documentation will be generated automatically in order to allow the consumer of the interface to edit/adapt to the REST body changes.

As seen in the following Figure 2, Swagger is easily added at the code of the developed service. It supports all major languages, and in the example below of a Spring based Java application it identifies REST components automatically.

Doc	kerfile	e × 🔯 Dockerfile ×	🔤 user.sql ×	III application.yml ×	📇 CHANGELOG.md 🛛	🔠 docker-compose.yaml 🛛	🧧 SwaggerConfig.java 🛛	🔘 UserRes	tController.java ×	C Respo
		ge_eu.ubitech.part.co								
			<u>ilter</u> implement							
0	p	ublic void init(Filte	rConfig filterC	onfig) throws Servlet						
ei	ek pi		e response = (H (mms "Access (come "Access (come "Access (come "Access (come "Access (come "Access	<pre>ittpServletResponse) s Control-Allow-Origin Control-Allow-Methods Control-Max-Age Control-Allow-Headers Control-Allow-Headers Control-Allow-Credent</pre>	<pre>tResponse servletResponse rvletResponse; ",</pre>	e, FilterChain filterChain) t LETE, PUT"); ith"););				
oî		Dverride ublic void destroy()								
	Doc	kerfile × 🛽 🖻 Do	ckerfile × 🛽	🛙 user.sql 🗵 🏢 a	pplication.yml ×	🔚 CHANGELOG.md 🗵 🚦	🛙 docker-compose.yaı	ml × 💿 s	waggerConfig.	java ×
1		package eu.ubite		ig;						
3 12		import								
13 14										
15 16 17 18 20 21 22 23 24 25 26 27 28		<pre>@Configuration @EnableSwagger2 public class Swa @Bean public Docke</pre>	ggerConfig { t api() { ew Docket(Do .sele .apis	cumentationType.S ct() (RequestHandlerSe) s (regex(@BUGGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB						

Figure 2. Sample Configuration of Swagger on a Spring boot application

Swagger then produces the appropriate JSON for the documentation. Based on this JSON, a dedicated UI can render nicely the whole documentation, while it is also possible to create client libraries for most major languages.

POST /api/vl/user create		
Parameters	Try it ou	ıt
Name	Description	
user * ^{required}	user	
(body)	Example Value Model	
	<pre>{ "dstcCreated": "2017-11-27T17:15:09.8582", "ems1l": "string", "enabled": true, "firstLogin": true, "firstLogin": true, "id": 0, "lastNane": "string", "password": "string", "username": "string" } }</pre>	
	Parameter content type application/json	

Figure 3. Sample of Swagger UI

Swagger UI is deployed as part of the development, production or use case deployments using the following code in the Docker-compose file.

swagger:
container_name: "ANASTACIA_swagger"
image: swaggerapi/swagger-ui
environment:
API_URL: "http://localhost:8080/v2/api-docs"
ports:
- 8070:8080

2.4.2.1 Asynchronous Operations

For interfaces that need asynchronous operation mode for their communication, a message broker can be used. The publish/subscribe (pub/sub) messaging pattern is realized using destinations known as topics. Publishers send messages to the topic and subscribers register to receive messages from the topic. Any messages sent to the topic are automatically delivered to all subscribers. In ANASTACIA we are using Apache Kafka⁸ as message broker for the integration of monitoring agents feedback to the Data Filtering and Preprocessing component, while it might also be considered its use between components needing asynchronous communication.

2.4.3 Code Level Integration - Working on the same components

In the cases that multiple partners need to work on the same components, code level integration is supported with a code repository that is available for all partners that need to work together or to store their component's code safety. The source code repositories are available at: <u>https://gitlab.com/ANASTACIA-project</u>

⁸ https://kafka.apache.org/

Anastacia-project 🛛

A holistic solution enabling trust and security by-design for Cyber Physical Systems (CPS) based on IoT and Cloud architectures. http://www.anastacia-h2020.eu

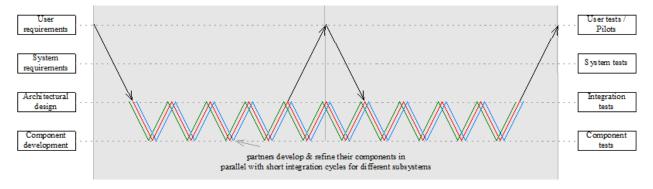
🌲 Global 🔻

ter by	Last created V	New project 🔻
A (anastacia-monitoring-data-enhancer Monitoring data filtering and pre-processing component	★ 0 合 3 weeks ago
۵ (F	framework Repository that is used for the integration of all components of the Anastacia framework. The Container Registry of this repository hosts all the docker images need	🚖 0 🔍 3 weeks ago
۵ (IoTBrokerConnector A Kafka connector used in order to consume data from the IoTBroker and push them to the Kafka.	🚖 0 🛛 💭 3 weeks ago
۵ ۵	security-orchestrator Repository, Registry and Issue tracker for Security Orchestrator	triangle 1 to 1 to 2 weeks ago
	reaction-module Repository, Registry and Issue tracker for Reaction Module	triangle 1 to 1 to 2 weeks ago
J (F	policy-editor Repository, Registry and Issue tracker for Policy Editor and Interpereters	triangle 1 to 1 to 2 weeks ago
٦ s	seal-manager Repository, Registry and Issue tracker for Seal Manager	★ 0 合 2 weeks ago

Figure 4. ANASTACIA project group in GitLab

2.4.4 Shared Knowledge

The last part to cover for the technical integration and collaboration mechanism is how to allow partners that are working in distributed manner to collaborate. This important parameter is often performed without setting strict rules, but in the case of ANASTACIA we will try to collect the shared knowledge in order to ease the development and integration. Towards these directions the following steps have been performed. Initially a slack ⁹ team for ANASTACIA has been created, and dedicated channels for each work package have been created. Then, in order to achieve integration planning goals, a document collecting all the details of the technical integration, together with instructions and examples had been created and uploaded to the common repository of the project. This document will be constantly updated when needed. Finally, with GitLab it is also possible to create wiki pages for each of the component in order to allow partners developing a component to provide the needed information and instructions in a structured format.


⁹ https://slack.com/

3 PLATFORM IMPLEMENTATION AND INTEGRATION PLANNING

In ANASTACIA we perform two cycles of technical and user evaluations during the project period, while the development of the platform and its evaluation will be performed in parallel. The results of the validation and the evaluation need to be fed back into the development cycle, improving the user experience and detecting open issues. Therefore, after the evaluation will be performed, the resulting issues need to be discussed by the consortium and the list of functional requirements for the next software development iteration will be updated accordingly.

As depicted in Figure 5, the development and testing lifecycle combines the V-model¹⁰ process with short, concurrent development cycles. Component testing is performed frequently, and integration testing that depends on the interfaces of two or more partners is performed occasionally, and specifically when changes on interfaces are done. Due to the effort and cost of full system tests and user testing, these evaluations must be scheduled with a lower frequency than component and integration tests. Also, they are performed independently of the shorter component development cycles, based on a predefined release plan.

For the whole platform development, a two-cycle process will be followed: a first cycle will be performed with the initial requirements definition, the design and development of first demonstrators, and the first tests performed by the end users. A second cycle will follow with the revisions based on the users' feedback, the design and development of the final demonstrators and the final tests and evaluations of end users and final users[3].

However, smaller iterations with changes on the architectural design and the development will be used through the project duration. This continuous process will also be documented with revised versions of the official reports for requirements analysis (D1.4 due on M23) and architecture (D1.5 due on M36).

3.1 MULTI-ITERATION/RELEASE PLAN

Based on the plan of having to two releases of ANASTACIA framework, the consortium had to make decisions regarding the specific functionalities that will be supported on each release, in order to coordinate the development, iteration and testing process. Meanwhile the integrations between components has starter in order to allow the iterative implementation of the platform and assure the delivery of the first version on M19.

The final version of the integrated platform will be delivered on M36 and will include all the individual functionalities per components and extend the integration of the first version to support the functionalities provided in the final version of the components.

¹⁰ https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html

Anastacia-project > Milestones		
Open 3 Closed 0 All 3	Due soon 🗸 New n	nilestone
MS14 - Official integration planning milestone - Project Milestone 0 Issues - 0 Merge Requests (Expired) expired on Jan 1, 2018 IoTBrokerConnector	0% co	omplete
First Internal Integration Iteration - Mid of April - Project Milestone 0 Issues - 0 Merge Requests expires on Apr 20, 2018 IoTBrokerConnector	0% co	omplete
MS20- 1st Official Integration Milestone - Project Milestone 3 Issues - 0 Merge Requests expires on Jul 31, 2018 IoTBrokerConnector	Close Milestone	omplete

3.1.1 1st Platform Release and Validation Iteration

The first release of ANASTACIA is dictated by the Milestone MS20 that is due on M19 and the goal is to complete the "first cycle of integration and technical validation". After that, by the end of M20 and according the milestone "MS23- First iterative cycle of development completed", all the validation results will be taken under account for the closure of the first cycle of development of all components, in order to start working into the second-and final- release of the platform.

Component	Responsible	onents' status for first release (M19) Status for First Release	
component			
	Partner		
	(Subcomponent)		
Policy Editor Tool	UMU	First implementation covering the policy model for	
		the first main identified use cases.	
Interpreter	UMU	A first implementation comprising the H2M	
		refinement and M2L translation processes for the	
		first main identified use cases.	
Security Enablers Provider	OdinS (DTLS	First development of DTLS proxy for enabling secure	
	proxy)	channels between IoT devices. Creation of the policy	
		plugin for the enforcement by Orchestrator.	
	OdinS (AAA	First development of security mechanisms for	
	Architecture)	providing authentication and authorization in the IoT	
Architecture	, a childer cy	networks. Creation of the policy plugins for the	
	enforcements by Orchestrator.		
	OdinS (Network	First development of Network Authenticator for	
	Authenticator)	enabling secure bootstrapping of IoT devices.	
		Creation of the policy plugin for the enforcement by Orchestrator.	

	UMU (IPTABLES)	First development of filtering capabilities using the
		IPTABLES enabler.
	UMU(IoT	First implementation of power management,
	Controller)	bootstrapping and IoT honeynet capabilities.
	UMU (SDN ONOS	First implementation of filtering and forwarding
	NB & SDN ODL	capabilities.
	NB)	
	UMU (Cooja)	First implementation of IoT honeynet translation and
		deployment.
	UBITECH (Kippo)	First implementation of the ssh honeynet enabler.
Security orchestrator	AALTO	First implementation of the Security Orchestrator
		incorporating the different SDN and NFV features.
IoT controllers	OdinS / UMU	First development and integration with the
		Orchestrator component for enabling a subset of
		security actuations over IoT devices .
		First implementation of the IoT controller
		northbound/southbound endpoints in order to cope
		with the first main identified use cases.
NVF orchestrators	AALTO	Upgrade to Open Source Mano Release 3. (TESTING)
		Definition of the relevant VNFD (Virtual Network
		Function Descriptor) and NSD (Network Service
		Descriptor) for each security appliance.
SDN controllers	AALTO	SDN driver has been updated, in order to better
		support the new functionalities according to the use
		cases.
Monitoring Agents	OdinS	Integration of IoT-Broker with Data Filtering for
		providing 2 different types of monitoring data such as
		sensor data and attacks notifications.
	MONT	Integration of MMT-Probe into the Kafka Broker,
		providing the extracted information to all Kafka
		subscribers
	ATOS	Integration with three main sources of sensors: (1)
		security sensors deployed in the network,(2) UTRC
		Data analysis tool and (3) the Montimage Monitoring
		Tool. Implementation of interface for the reception
		of logs from these three sources. Creation of plugins

		for processing the events received from these
		sources. Normalization of events to be correlated.
Data Filtering and pre-	UBITECH	Integration with the Data Analysis components for
processing Component		providing filtered output and with 3 different types of
p		monitoring data as input; IoT devices data, Network
		events, security events. Aggregation of data and
		filtering of
Data Analysis Component	MONT	Integration of the MMT-Security Module with the
		Atos' XL SIEM tool, using the syslog format required
		by Atos' tool.
	ATOS	Interpretation of normalized events. Storage of the
		normalized events in a database, which will be
		available for the Security and Privacy Seal module.
		Correlation of events looking for security incidents.
		Generation of security alerts, along with the criticality
		of the alert. Notification of the alert to the Verdict
		and Decision Support System.
Security Model Analysis	THALES	Interpretation of reaction capabilities received from
Component		the orchestration at Reaction set-up time.
Verdict and Decision	ATOS	Initial definition of the inputs for the risk assessment
Support System		evaluation carried out as part of the decision support
		system. Definition of the criteria for the decision
		support. Integration of the format used for the
		exchange description of the reactions.
Mitigation Action Service	ATOS, MONT	Definition of a data format for the exchange of
		reactions information between the Reaction module
		and the Orchestration module.
Security Alert Service	ATOS, CNR	Initial deployment of a graphical dashboard that
		integrates information about events received
	MAND, DG, AS	Dynamic Security and Privacy Seal implementation
Dynamic Security and		
Dynamic Security and Privacy Seal component		partially completed
-	MAND, DG, AS	partially completed GUI of Dynamic Security and Privacy Seal implementation partially completed

3.1.2 Final Version of the Platform and Validation Iteration

The final version of ANASTACIA Framework will be delivered at the end of the project, by M36. This version will be fully integrated and the technical validation of this final version of ANASTACIA framework will be delivered, as part of milestone "MS32 - Second iterative cycle of development completed and validated".

Component	Responsible Partner (subcomponent)	nents' status for final release (M36) Status for Final Release
Policy Editor Tool	UMU	Final implementation covering the main identified use cases, allowing to model policies through the GUI and request their enforcement.
Interpreter	UMU	Final implementation comprising the H2M refinement and M2L translation processes for the main identified use cases.
Security Enablers Provider	OdinS (DTLS proxy)	Final integration of DTLS proxy to enable the dynamic deployment by NVF orchestrator.
	OdinS (AAA Architecture)	Final integration of all AAA security mechanisms to enable the dynamic deployment by NVF orchestrator.
	OdinS (Network Authenticator)	Final integration of Network Authenticator to enable the dynamic deployment by NVF orchestrator.
	UMU (IPTABLES)	Final development of filtering capabilities using the IPTABLES enabler in order to cope with the main identified use cases.
	UMU (loT Controller)	Final implementation of power management, bootstrapping and IoT honeynet capabilities.
	UMU (SDN ONOS NB & SDN ODL NB)	Final implementation of required networking capabilities by the use cases.
	UMU (Cooja)	Final implementation of IoT honeynet translation and deployment as VNF, from different IoT architecture topologies.
	UBITECH (Kippo)	First implementation of the ssh honeynet enabler.
Security orchestrator	AALTO	Final implementation of the Security Orchestrator as a virtual instance covering the defined use cases.

IoT controllers	OdinS / UMU	Final development and integration with the Orchestrator component for enabling all security actuations over IoT network.
		Final implementation and integration of the IoT controller northbound/southbound endpoints in order to cope with the main identified use cases.
NVF orchestrators	AALTO	Final version of Open Source Mano with the relevant VNF and NS descriptors and the final version of the OSM driver.
SDN controllers	AALTO	Final version of the ONOS controller with the relevant underlying architecture and the final version of the ONOS driver.
-	OdinS	Final development and integration of all attacks notifications provided by IoT broker and AAA architecture when detect malicious behaviours according to use cases proposed in ANASTACIA project.
	MONT	Integration of the Adapted version of the MMT-Probe to support all the IoT protocols involved in the ANASTACIA use cases.
	ATOS	Implementation of new plugins for the incorporation of new sources of events, including new virtual security services.
Data Filtering and pre- processing Component	UBITECH	Creation and Integration of the configuration interface (MCI) with appropriate platform mechanism that need to refine the parameters of filtering. Finalization of appropriate models used for filtering and pre-processing of data.
Data Analysis Component	ATOS	Incorporation of cross correlated alarms that integrates different events from different sources for the generation of more accurate alarms.
Security Model Analysis Component	THALES	Incorporation of new reaction capabilities included in the second stage of the project
Verdict and Decision Support System	ATOS	Complete creation of a Risk Assessment engine within the decision support system for the selection of mitigation actions.

Mitigation Action Service	MONT	Implementation of the standard language to communicate the set of computed countermeasures to the Security Orchestrator.
	ATOS	Complete integration between the Orchestrator and the Reaction Module using the data structure used for the exchange of reaction information.
Security Alert Service	ATOS, CNR	Incorporation of alerts, configuration of the decision support service, visualization of reports, interfaces for the configuration of monitoring, alerting and reaction components.
Dynamic Security and Privacy Seal component	MAND, DG, AS	Dynamic Security and Privacy Seal implementation completed
Dynamic Security and Privacy Seal User Interface	MAND, DG, AS	GUI of Dynamic Security and Privacy Seal implementation completed

4 PLATFORM DEPLOYMENT OVERVIEW

The deployment of ANASTACIA as platform will be executed in close collaboration with the use case partners of the project, as the platform will be tailored to the needs of each use case. However, for development and demonstration purposes a test installation of the core platform components has been provided in a cloud infrastructure using OpenStack based virtual machine software.

Technical specifications or requirements of existing components					
Component(s)	Memory	Storage	Processor	Туре	OS
Platform Message Brokerage	8GB	20GB	2VCPU	VM hosted in OpenStack	Ubuntu 16.04
Data Filtering and pre-processing Component	Co-hosted in th	ne same VM with	n Message Broke	r	
Monitoring Atos Agents	8Gb max	50Gb	A normal Intel i5 (minimum)	On premises VM hosted in VMWare or Virtualbox or hosted in a Cloud	Ubuntu based
Data Analysis Component	16Gb min	100Gb	Intel Xenon 2CPU	VM hosted in a Cloud hosting	Ubuntu based
Verdict and Decision Support System	16Gb min	100Gb	Intel Xenon 2CPU	VM hosted in a Cloud hosting (can be hosted the same VM as above)	Ubuntu based
Mitigation Action Service	16Gb min	100Gb	Intel Xenon 2CPU	VM hosted in a Cloud hosting (can be hosted the same VM as above)	Ubuntu based
Security Alert Service	16Gb min	100Gb	Intel Xenon 2CPU	VM hosted in a Cloud hosting (can be hosted the same VM as above)	Ubuntu based
loT Broker	16Gb min	100Gb	Intel Xenon 2CPU	VM hosted in a Cloud hosting	Ubuntu 16.04
AAA Architecture	16Gb	40Gb	Intel Xenon 2CPU	VM hosted in a Cloud hosting	Ubuntu 16.04

Network Authenticator	8Gb	20Gb	Intel Xenon 2CPU	VM hosted in IoT network	Ubuntu 16.04
Montimage Monitoring Tool	4Gb	20Gb	2VCPUs	VM ready to be deployed in the monitored network.	Ubuntu 16.04
Security Orchestrator	2Gb	20Gb	1vCPU	VM hosted in Aalto's Openstack Cluster	Ubuntu 16.04
SDN controller (ONOS)	8Gb	40Gb	4vCPU	VM hosted in Aalto's Openstack Cluster	Ubuntu 16.04
Open Virtual Switch	1Gb	10Gb	1vCPU	VM hosted in Aalto's Openstack Cluster	Ubuntu 16.04
NFV Orchestrator (Open Source Mano -OSM)	8Gb	120Gb	8vCPU	VM hosted in Aalto's Openstack Cluster	Ubuntu 16.04
DSPS Web server	4-8Gb	20Gb	4-8VCPU	VM hosted in MI server	Ubuntu 16.04
DSPS servers	4Gb	25Gb	4VPCU	VM hosted in MI server	Ubuntu 16.04
Policy Interpreter	2GB	20GB	1vCPU	VM hosted in UMU server	Ubuntu 16.04

5 PLATFORM TESTING AND VALIDATION PLAN

This section presents the platform testing and validation as part of the overall evaluation strategy in the context of ANASTACIA. Here, the integration and testing plan will be analysed, and the actual testing and evaluation results will be provided in deliverables D6.2, D6.3. For the creation of the overall testing and validation plan analysis of standards and common methodologies has been made, like the IEEE 829¹¹ for the creation of test plan and the ISO 250010¹² for the identification of important attributes that we should measure for the evaluation of the overall framework and the individual components.

Therefor in ANASTACIA we define the following facets of testing:

- Unit testing that can be performed by the separate development teams when new functionalities are developed.
- Integration testing performed by the development teams in order to test the smooth co-operation between the various layers and components. The integration tests and also any unit tests that will be created for the project validation will be continuously executed based on continuous integration (CI) scheme that is documented in section 5.4.
- Stress testing can be performed for the benchmarking of the system or specific components. Due to the fact that ANASTACIA framework targets to a TRL of 5 according to project DoA [3], stress tests will be a supplementary action that can be performed for the components that partners believe would benefit from this action.
- Validation based on the requirements' coverage (functional completeness and correctness).
- User acceptance testing will ensure the usability of the system will be performed during the use case evaluation and documented in deliverables D6.3 and D6.6.

5.1 UNIT TESTING

An important part of both the integration and the validation process is the execution of unit tests. Unit tests are the tool to test the functional modules of software. A suitable unit test is applied to the piece of code without any dependencies on other code parts. Therefore, the developer of the particular layers will test their components by means of unit tests before integrating them into the full application. In the case of ANASTACIA framework, development is based on the development of standalone components but also on the adaptation and integration of existing components. Therefore, unit testing at the lowest level not a primordial part of the general testing methodology of ANASTACIA, as the main focus is the integration testing.

Unit testing will be used as an additional mechanism of validating the developed code, as a task that each component developer can use in order to verify proper functionality before the integration of the component in ANASTACIA Framework. Usually, all unit-tests are executed during the build-process, unless they are defined to be ignored (marked as @Ignored for Java applications). This practically means that each release of a component has is guaranteed regarding its stability and the same time allows developers to better control the level of test coverage on their components.

The exercise of creating unit tests is still in early stages and the documentation of Unit tests will be provided with more details for all components in deliverable D6.4. An indicative unit test developed in Java code for ANASTACIA is presented in the Listing below.

@Test

public void testGetrulesFromInputData () {

¹² https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

¹¹ https://standards.ieee.org/findstds/standard/829-2008.html

```
List<DataInput> datainputs = dataRepo.findAll();

for (DataInput datainput: datainputs) {

List<Attack> rules = ruleRepository.findByExpressionID(datainput);

if (rules != null) {

rules.stream().forEach((rule) -> {

logger.log(Level.INFO, "Rule name {0}", rule.getRuleName());

});

}

}

}//EoM
```

Finally, we introduced a template for reporting the unit tests that will be used for the collecting Unit tests information for deliverable D6.4.

Unit Test Case Documentation Form					
Unit Test Reference Code	#UT1				
Component	Data Filtering and pre-processing Component				
Tester	Junit				
Short Description					
This test case is responsible for creating, fetching and deleting rules based on incoming monitoring data.					
Input Data					
DataInputType Object					
Output Data					
Success response code					

 Table 18. Unit Test documentation template

Apart from the tests that guarantee the functional correctness of the components, it is important to make tests at integration level for a complete testing and validation process. This means that integration tests shall be created and used for all identified interfaces and to some major platform functionalities. This can be done using unit testing on the methods that are implementing the integration, in order to make them part of a continuous integration and continuous testing process.

5.2 TESTING FOR THE INTEGRATED PLATFORM

Integration testing is the phase in software testing in which individual software modules are combined and tested as a group. Integration testing in ANASTACIA can also be seen as an extension of unit testing. The main idea of integration testing is to start from two components to test the interface between them. In some cases, more than two components can participate in a common test. Eventually this process will be expanded in order to test all the integrated components of the platform.

The goal of integration testing is to identify problems that occur when components are combined. By using a test plan that suggests the usage of unit tests before combining components, the errors discovered when

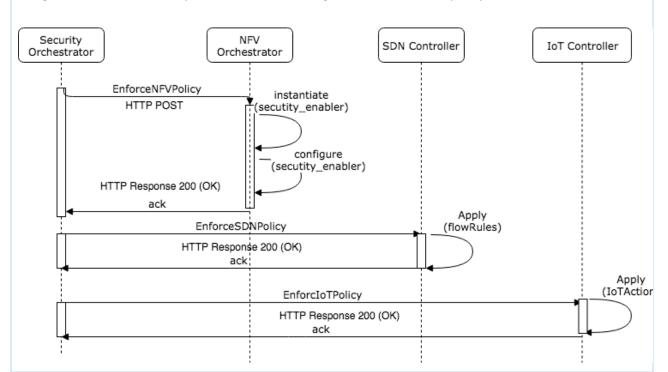
in integration tests are most probably related to the interface between them. This method reduces the number of possibilities of errors to a far simpler level of analysis.

In general, integration testing can be done in a variety of ways but the following are three of the most common strategies:

- The top-down approach of integration testing requires the highest-level modules to be tested and integrated first. This allows high-level logic and data flow to be tested early in the process and it tends to minimize the need for drivers. However, the need for stubs complicates test management and low-level utilities are tested relatively late in the development cycle. Another disadvantage of top-down integration testing is its poor support for early release of limited functionality.
- The bottom-up approach requires the lowest-level units to be tested and integrated first. These units are frequently referred to as utility modules. By using this approach, utility modules are tested early in the development process and the need for stubs is minimized. The downside, however, is that the need for drivers complicates test management and high-level logic and data flow are tested late. Like the top-down approach, the bottom-up approach also provides poor support for early release of limited functionality.
- The third approach, sometimes referred to as the umbrella approach, requires testing along functional data and control-flow paths. First, the inputs for functions are integrated in the bottomup pattern discussed above. The outputs for each function are then integrated in the top-down manner. The primary advantage of this approach is the degree of support for early release of limited functionality. It also helps minimize the need for stubs and drivers. The potential weaknesses of this approach are significant, however, in that it can be less systematic than the other two approaches, leading to the need for more regression testing.

For the integration testing of ANASTACIA, we chose the last option (umbrella approach), as it combines the best of both approaches. It allows all participating entities, to execute simultaneously multiple testing in several components. In the next section the basic integration tests that have been identified and tested so far, are presented.

5.2.1 Integration Tests


For ensuring the proper integration of the components of ANASTACIA, we will use tests that can assess the functionalities that require multiple components. In these tests, methods from different components are combined in order to achieve the needed functionality. Therefore, the focus is given to the combination of pieces that create a basic integrated functionality. In the following Table 19 the tests that have been identified so far, in order to cover the integration aspects of the project, are presented.

Test	Table 19. Identified and Planned Integration est setAnalysisParamsTest			
Interface(s) Tested	Con	nponents Use	d	Short Description
Monitoring Cont Interface (MCI)	Filte	,	strator, Data pre-processing	Testing of the proper functioning of editing the parameters that affect the data filtering

The security orchestrator is responsible for enforcing relevant security policies in the data plane. This can be either using SDN, NFV, the IoT controller or a combination of those. For the NFV part, the security orchestrator will make sure that the security enablers are up and configured by interacting with the NFV orchestrator. When it comes to SDN, using the northbound API, receiving an acknowledgment of the

request means that the security policy has been properly enforced. The same is applicable for the IoT mitigation actions (The reception of the acknowledgement confirms the policy enforcement).

Test SubscribeData-from-IoT-network

Interface(s) Tested	Components Used	Short Description
	IoT broker and Data Filtering and pre-processing Component	Testing of the data exchange of sensors values and attack notifications

The Data Filtering and pre-processing Component subscribes to the IoT broker to receive new data from sensors. IoT Broker return subscription response. This response is used to exchange new data between IoT broker and Data Filtering and pre-processing Component.

Test	NetworkAuthentication			
Interface(s) Tested	Components Used	Short Description		
	Network Authenticator, IoT device and Orchestrator	Testing the bootstrapping process to authenticate a new device in the IoT network.		

When each IoT device is switched ON, the device sends a message including its identifier to request the authentication in the network. The network authenticator verifies the identifier to enable the communication. If the verification is ok, the network authenticator sends a message including the IP of the new device and the DTLS key generated in the bootstrapping process towards the Orchestrator.

Test	GetCapabilityToken		
Interface(s) Tested	Components Used	Short Description	

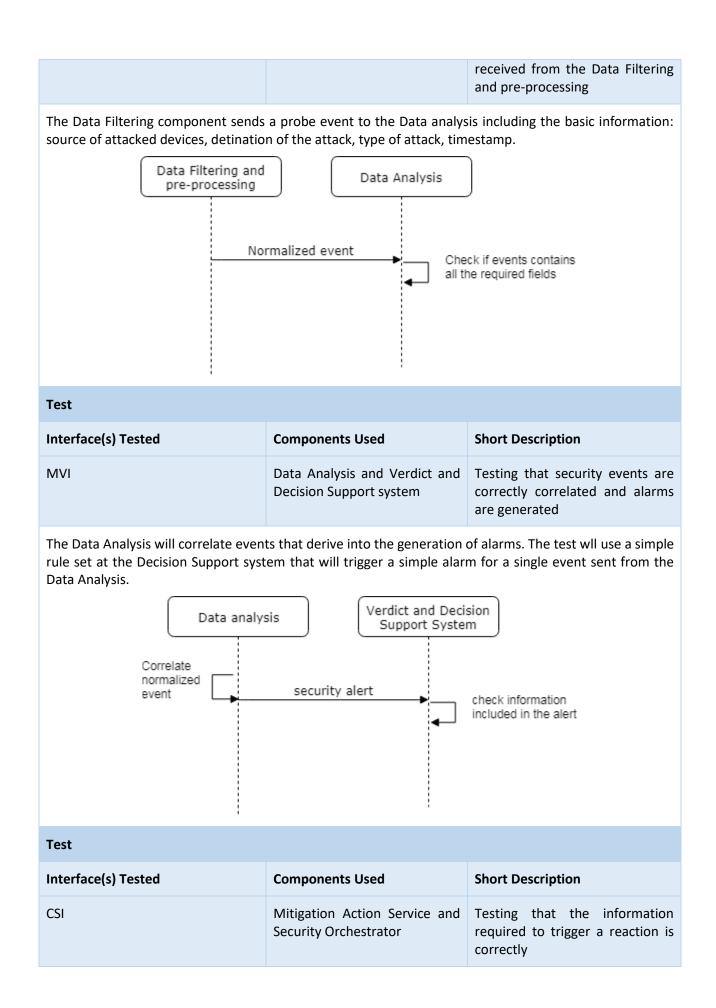
AAA	Architecture,	Network	Testing	the	query of	сара	bility	
Authe	nticator and IoT	۲ device	tokens	to	authorize	the	data	
			publicat	tion	in IoT broke	er		

The IoT device sends a query including the publication action towards the IoT broker for requesting a capability token. The AAA Architecture verifies the authorization of that device according to XACML policies. If the authorization is ok, the AAA Architecture responds an ACK message including the capability-token towards the IoT device. The Network Authenticator acts as a bridge between IoT device and AAA Architecture.

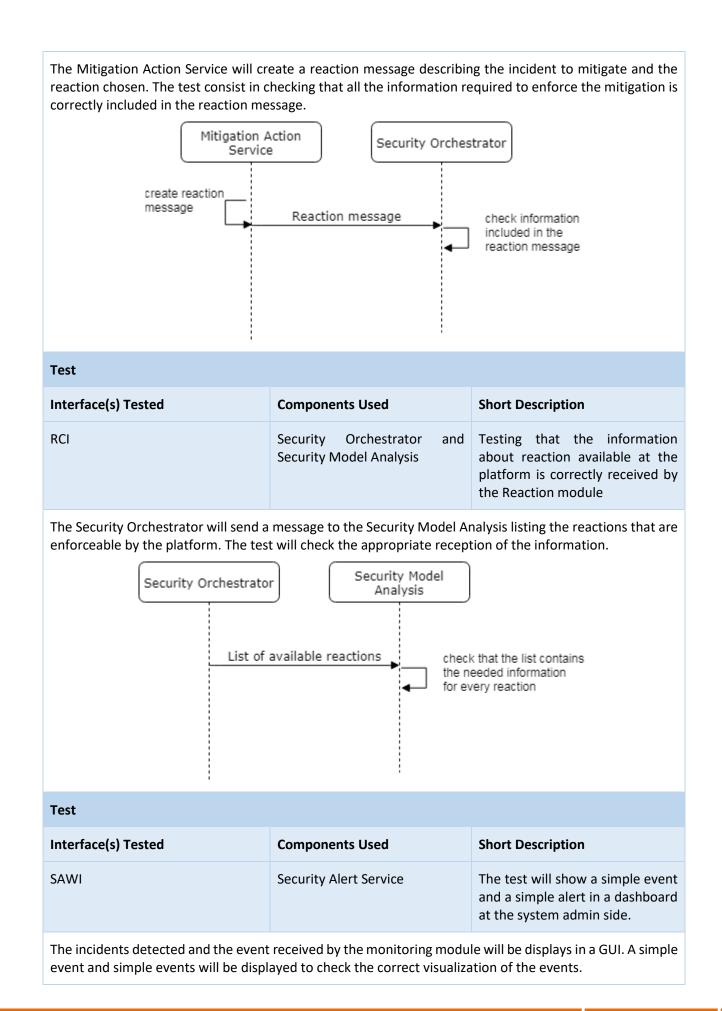
Test	VerifyCapabilityToken			
Interface(s) Tested	Components Used	Short Description		
	IoT device and IoT broker	Testing the verification of capability tokens to authorize the data publication in IoT broker		

The IoT device sends a message including data and capabilityToken. The IoT broker verifies the capabilityToken before publishing the data in MongoDB. The IoT broker sends a ACK message towards the IoT device.

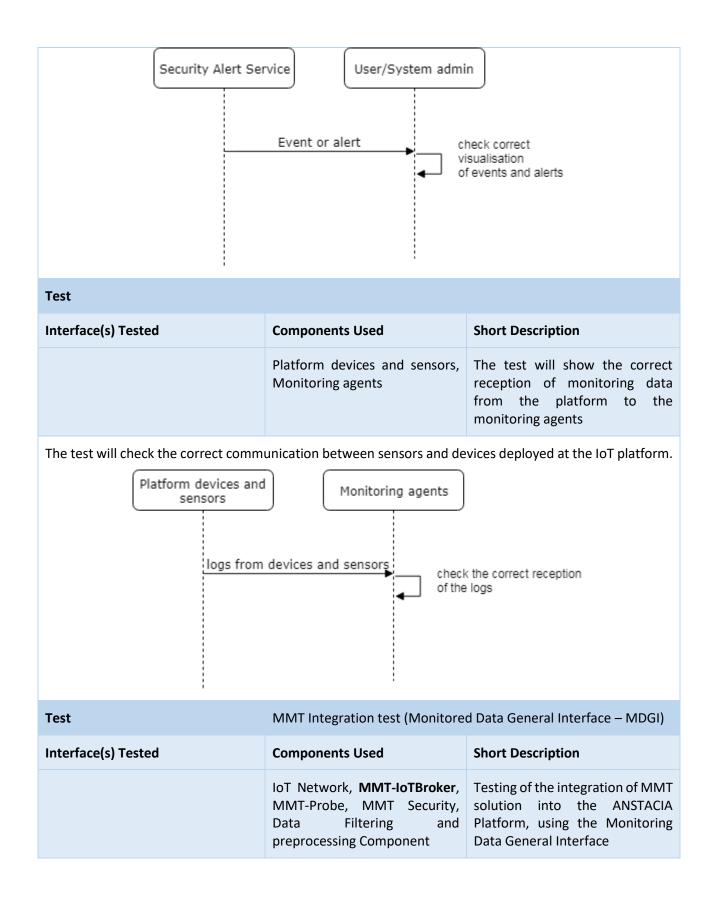
Test	NetworkAuthentication			
Interface(s) Tested	Components Used	Short Description		
	Network Authenticator, IoT device and Orchestrator	Testing the bootstrapping process to authenticate a new device in the IoT network.		

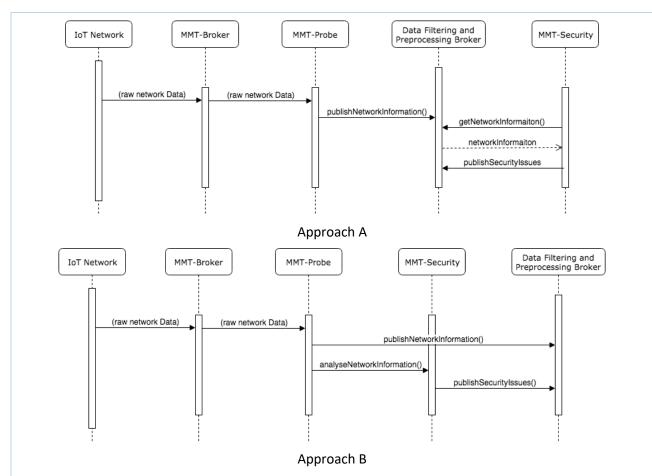

When each IoT device is switched ON, the device sends a message including its identifier to request the authentication in the network. The network authenticator verifies the identifier to enable the communication. If the verification is ok, the network authenticator sends a message including the IP of the new device and the DTLS key generated in the bootstrapping process towards the Orchestrator.

Test	DTLS-activation		
Interface(s) Tested	Components Used	Short Description	
	DTLS proxy and IoT controller	Testing the activation of secure channel using DTLS protocol	


The IoT controller sends a message including the IP address of IoT device and a shared-key to DTLS proxy which opens a secure channel with the IoT device.

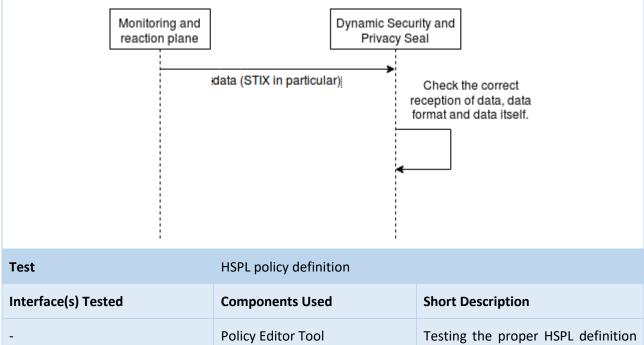
Test		
Interface(s) Tested	Components Used	Short Description
	Data analysis and Data Filtering pre-processing	Testing that the security event are correctly normalized when





NOTE: Two possible approaches are possible here:

- Approach A: The general ANASTACIA Architecture establishes that the data should be sent from the Agents to the Data Filtering and Pre-processing component, to be sent from this module to the analysis tool. This approach utilizes MMT's capability to use Kafka Brokers to publish the information extracted by MMT-Probe (using DPI techniques), making it available to all analysis tools. In particular, the MMT-Security can use this information from the Kafka Channel in order to test the security properties. The verdicts of these analyses will also be published in the Kafka Broker in order to be used other analysis tools (in particular, the XL SIEM Tool).
- Approach B: In this approach, MMT-Probe both publishes the information on Kafka and sends it directly to MMT-Security. Once the Security analyses have been performed, the verdicts are also published to Kafka.

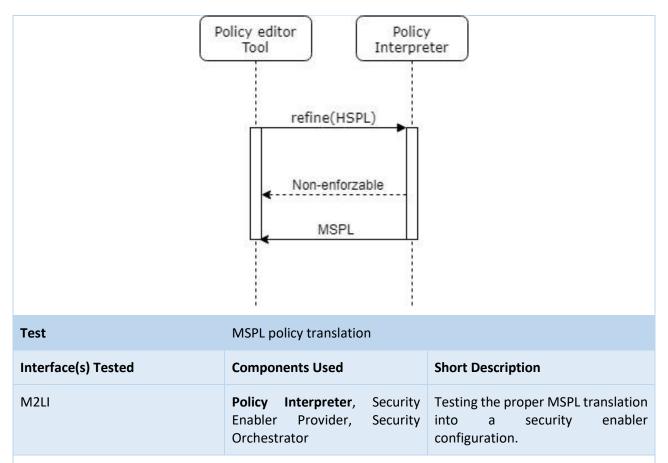

The first approach has been selected.

Interface(s) Tested	Components Used	Short Description
SMMI	Dynamic Security and Privacy Seal	The test will display the different kinds of data provided by the modules developed in the frame of WP4.

The detected threats and the corresponding events transmitted from WP modules to the DSPS server will be shown in the DSPS GUI. The test is separated in several parts, depending on the source of the data,

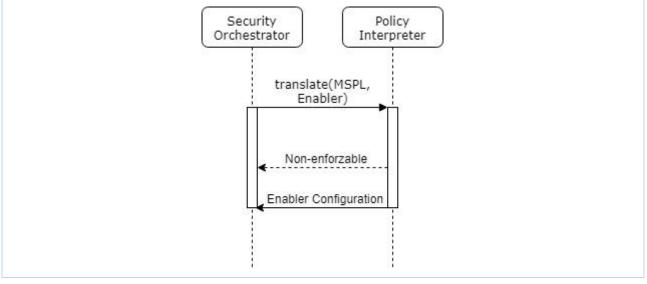
their format and the information contained. Of course, this test will include the validation of the data described using STIX/TAXII.

To instantiate HSPL policies through the Policy Editor Tool and verify the file generated is compliant with the HSPL scheme.


from the Policy Editor Tool

Test	HSPL policy refinement				
Interface(s) Tested	Components Used Short Description				
H2MI	Policy Interpreter , Security Enabler Provider	Testing the proper HSPL refinement			

To perform HSPL policy refinements, verifying:


- 1. Non-enforceable results
- 2. Enforceable-results, verifying MSPL generated are correct and compliant with the MSPL scheme.

To perform MSPL policy translations for the main identified security enablers, verifying:

- 1. Non-enforceable results
- 2. Enforceable-results, verifying the generated configuration is correct for the specific technology.

5.3 VALIDATION FOR THE INTEGRATED ANASTACIA PLATFORM

For the evaluation of the quality of the developed platform we selected a popular standard as basis, namely the ISO/IEC 25010:2011 "Systems and software engineering - Systems and software Quality Requirements

and Evaluation (SQuaRE) - System and software quality models"¹³. In more detail, the ISO/IEC 25010:2011 defines as stated in its official website:

A <u>quality in use model</u> (in our case Actual Usage Evaluation) composed of five characteristics (some of which are further subdivided into sub-characteristics) that relate to the outcome of interaction when a product is used in a particular context. This system model is applicable to the complete human-computer system, including both computer systems in use and software products in use.

A <u>product quality model</u> (in our case Technical Evaluation) composed of eight characteristics (which are further subdivided into sub-characteristics) that relate to static properties of software and dynamic properties of the computer system. The model is applicable to both computer systems and software products.

Since the technical assessment of ANASTACIA framework will not only be based on the software elements that will be delivered, but also the perceived usefulness and appropriateness will be assessed by the use cases, the technical validation on ANASTACIA can be conducted using a subset of the product quality model of the ISO 25010 and defined Key Performance Indicators (KPIs) based.

5.3.1 The Product Quality Model

The product quality model describes the internal and external measures of software quality. Internal measures describe a set of static internal attributes that can be measured. The external measures focus more on software as a black box and describes external attributes that can be measured.

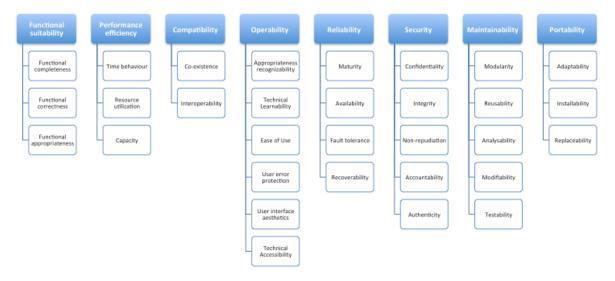


Figure 7. A product quality model view based on the ISO/IEC 25010:2011 standard

In general, this model evaluates software quality using a structured set of characteristics (each of them including other sub-characteristic), which are the following:

- 1. Functional suitability The degree to which the product provides functions that meet stated and implied needs when the product is used under specified conditions.
- 2. Performance efficiency The performance relative to the amount of resources used under stated conditions.
- 3. Compatibility The degree to which two or more systems or components can exchange information and/or perform their required functions while sharing the same hardware or software environment.
- 4. Operability The degree to which the product has attributes that enable it to be understood, learned, used and attractive to the user, when used under specified conditions.

¹³ http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

- 5. Reliability The degree to which a system or component performs specified functions under specified conditions for a specified period of time.
- 6. Security The degree of protection of information and data so that unauthorised persons or systems cannot read or modify them and authorised persons or systems are not denied access to them.
- 7. Maintainability The degree of effectiveness and efficiency with which the product can be modified.
- 8. Portability The degree to which a system or component can be effectively and efficiently transferred from one hardware, software or other operational or usage environment to another.

The next table showcases the sub-characteristics of each category and indicates their relativity to the ANASTACIA framework.

Table 20. Technical Characteristics and Sub-characteristics relevant to ANASTACIA technical validation

Sub-characteristics	nical Characteristics and Sub-characteristics relevant to ANASTAC Definition	Relation to ANASTACIA integrated platform validation
Functional suitability		
Functional completeness	Degree to which the set of functions covers all the specified tasks and user objectives.	YES
Functional correctness	System provides the correct results with the needed degree of precision.	YES
Functional appropriateness	The functions facilitate the accomplishment of specified tasks and objectives.	NO
Performance efficient	cy	
Time behaviour	Response, processing times and throughput rates of a system, when performing its functions, meet requirements.	YES
Resource utilisation	The amounts and types of resources used by a system, when performing its functions, meet requirements.	YES
Capacity	The maximum limits of a product or system parameter meet requirements.	NO
Reliability		
Maturity	System meets needs for reliability under normal operation.	YES

Availability	System is operational and accessible when required for use.	YES
Fault tolerance	System operates as intended despite the presence of hardware or software faults.	YES
Recoverability	System can recover data affected and re-establish the desired state of the system is case of an interruption or a failure.	YES

5.3.1.1 ANASTACIA framework: Product Quality Evaluation Framework

Based on the tables presented in the previous sections that reveal which criteria could be measured during the ANASTACIA framework operation, and based on the fact that the ISO/IEC 25010:2011 standard does not define specific attributes (measuring ways) for each one of the sub-characteristics, the following list of indicators has been devised in order to allow the technical assessment of the ANASTACIA framework. It needs to be noted that due to the nature of the project and based on the operation conditions of the pilots, some of the below mentioned indicators are considered optional, as their measurement might not be possible/ not produce meaningful results.

Table 21. Quantitative Evaluation Metrics selected for the ANASTACIA framework

Sub-characteristics	KPIs	Calculation Type				
Functional completeness	Portion of functional requirements covered	(Completed high priority functional requirements / Total Number of high priority requirements) * 100 %				
Functional correctness	Portion of functional (Completed functional requirement requirements covered without high priority without bugs / reported bugs, after tests Number of high priority requirem * 100 %					
Time behaviour	Average Latency	(Total Response Time)/(No. o Requests)				
	Throughput	(Total No. of Kilobytes)/(Total Time of Operation)				
Resource utilisation	Mean % CPU Utilisation	(Σ (% CPU utilisation probes))/(No. of probes)				
	Max. Memory Used	No. of max Megabytes of RAM Memory recorded				
	Max. Processing Power Used	max % CPU utilisation recorded				
Maturity	Max. Concurrent Users Supported	No. of Max. Concurrent Users Recorded				
	Simultaneous Requests	No. of Simultaneous Requests				

Availability	% Monthly Availability	1- ((Downtown Time Minutes)/(Month Days*24*60))			
	Error Rate	(No. of Problematic Requests)/(Total Number of Requests)			
Fault tolerance	Number of Software problems identified without affecting the platform	No. of Non Critical Software Errors			
Recoverability	Mean time to recover from software problems	(Total Recovering Time due to Software Issues)/(Total Software Issues resulting to recovery)			

As ANASTACIA components have very diverse nature, it is not easy to use common measurement and KPIs for all. Therefore, in the following tables Table 22 and Table 23 we try to identify the suitable KPIs for each of these components. A dash means that the metric shall be examined in next stages, while N/A means that the metric is not applicable.

	Functional Completeness and Correctness	Average Latency	Throughput	Mean % CPU Utilisation	Max. Memory Used	Max. Processing Power Used
Policy Editor Tool	N/A	<1s	N/A	-	-	-
Interpreter	-	Policy refinement and translation processes for a basic security policy should take < 2s	-	-	-	-
Security Enablers Provider	-	Depends on the enablers (e.g. Latency resolve a authorization query should be <10s)	-	-	Should be minimized, but depends on the overall input load that will be provided	-
Security orchestrator	66%	Depends on the desired security policy to be enforced	1GBpS	Low	1Gb	50%
NVF orchestrator s	60%	Depends on the desired security policy to be enforced	1GBpS	High	16Gb	85%
SDN controllers	70%	Depends on the desired security policy to be enforced	1GBpS	Medium	8Gb	70%

Data Filtering and pre- processing Component	N/A	Latency should be <1s	Should be high but depends on the installation	Medium	Should be minimized, but depends on the overall input load that will be provided	85%
Security Alert Service	Integrity and certain reception of exchanged messages	Latency < 1s	-	Should be minimized.	-	-
Dynamic Security and Privacy Seal component	Functional, completed, correct	Latency < 1s	-	Should be minimized.	-	-
Dynamic Security and Privacy Seal User Interface	Functional, completed, correct	The latency should not affect the user but depends on the communication protocol used between the DSPS Web server and the user's terminal (for instance 3G or 4G).	-	Should be minimized.	-	-
ANASTACIA Platform as whole	>90% functional completeness and correctness	Platform latency <1s in general cases	N/A	N/A	N/A	N/A

	Tabl	e 23. KPIs per com	ponent (part 2/	2)		
	Max. Concurrent Users Supported	Simultaneous Requests	% Monthly Availability	Error Rate	Number of Software problems identified without affecting the platform	Mean time to recover from software problems
Policy Editor Tool	N/A	>10	>99%	Low	-	-
Interpreter	N/A	>10	>99%	Low	-	
Security Enablers Provider. AAA Architecture	N/A	>10	>99%	Low	-	-

Security Enablers	N/A	>10	>99%	Low	-	-
Provider. Network						
Authenticator						
Security Enablers	N/A	>10	>99%	Low	-	-
Provider. DTLS proxy						
Security Enablers	N/A	>20	>99%	Low	0	Few
Provider	(Internal					minutes
TTOVIDET	Component					
Security orchestrator	N/A	>20	>99%	Low	0	Few
•	(Internal					minutes
	Component					
NVF orchestrators	N/A	>20	>99%	Low	0	Few
	(Internal					minutes
	Component					
SDN controllers	N/A	>20	>99%	Low	0-multiple	Few
	(Internal				(depends	minutes
	Component)				on the	
					architecture of the	
					network)	
Monitoring Agents	N/A	N/A	>99%	Moderate	0	Few
Monitoring Agents	(Internal	,,,,		moderate	Ū	minutes
	Component)					
Data Filtering and	N/A	>300	>99%	Low		few hours
pre-processing						
Component						
	NI / A	> 20	> 0.00/	1	0	5
Data Analysis	N/A (Internal	>20	>99%	Low	0	Few minutes
Component	Component					minutes
Security Model	N/A	>20	>99%	Low	0	Few
•	(Internal	- 20		2011	U	minutes
Analysis Component	Component					
Verdict and Decision	N/A	>20	>99%	Low	0	Few
Support System	(Internal					minutes
Support System	Component					
Mitigation Action	N/A	>20	>99%	Low	0	Few
Service	(Internal					minutes
	Component					
Security Alert Service	N/A	>10	>99%	Very Low	0	Few
	(Internal					minutes
Discusto de la composición de la composicinde la composición de la composición de la composición de la	Component	. 10	×000/	1	0	F =···
Dynamic Security and	N/A	>10	>99%	Low	0	Few minutes
Privacy Seal						minutes
component						
Dynamic Security and	More than	>10	>99%	Low	0	Few
Privacy Seal User	20 users on					seconds:
Interface	the same					an error
	instance					message
						can be
						displayed
						to the
						users.

ANASTACIA Platform >10 as whole	N/A (depends on the request type)	>99	Low	0	Few minutes (all service must start)
------------------------------------	--	-----	-----	---	--

5.4 ANASTACIA DEVELOPMENT LIFECYCLE

From a technical point of view, developing an integrated framework like ANASTACIA through the combination of the developed artefacts is a difficult challenge, especially when trying also to guarantee the quality of the software. For this reason, the identified integration plan is enhanced with the alignment of the way that developers work in the project, through the definition of descriptive steps for the development, technical integration and deployment of components. This proposed development lifecycle scheme for ANASTACIA includes source code management, continuous integration, source-code quality control, release management and ticketing, and is presented in the following section.

5.4.1 Source Code Management

For the collaborative and distributed development of software, the usage of a common Version Control System (VCS) and a dedicated code repository is required. A VCS refers to a repository of files, usually for the files of source code of software, with monitored access. Every change made to the source is tracked, along with who made the change, why they made it, and references to problems fixes, or enhancements introduced, by the change. Modern code repositories and VCSs allow developers to effortlessly work in the same project by providing merging, branching and storing of code functionalities, and the same time provide many functionalities that help collaborative development. Some of the most commonly used Code Repositories are CVS¹⁴, SVN¹⁵, Mercurial¹⁶ and Git¹⁷.

In ANASTACIA we have selected Git as it is a distributed revision control system (every Git working directory is a full-fledged repository with complete history and full version-tracking capabilities, independent of network access or a central server) that is very popular and many online repositories exist in order to accelerate the development work and avoid the overhead of private installation. Git is very fast, provides branching capabilities as core functionality and since most operations are local there is no network latency involved.

Online code repositories as a service, like GitHub, Gitlab or Bitbucket, cover a broad aspect of functionalities, including code repositories with versioning systems and team collaboration tools. Our selection for ANASTACIA is Gitlab, due to ease to create multiple repositories under a single group that is created for ANASTACIA¹⁸, but also due to the offering of container registry, continuous integration and issues management, functionalities that as described in the following sections are part of the ANASTACIA development lifecycle.

5.4.2 Continuous Integration

The development and the deployment of ANASTACIA are based on a Continuous Integration (CI) process. CI is a software engineering approach of merging all developer committed copies to a shared registry and test it automatically on each commit or on a regular time (usually every day- nightly builds) to increase software quality since the early stages of development. It is used in software development to automate and improve

¹⁸ https://gitlab.com/anastacia-project

¹⁴ http://www.nongnu.org/cvs/

¹⁵ https://subversion.apache.org/

¹⁶ http://mercurial.selenic.com/

¹⁷ http://www.git-scm.com/

the process of software integration. The goal of CI is to ensure that code changes are not breaking the whole solution and allowing rapid and safe deployment of newer versions to production, as it ensures the proper functioning through automated testing. The starting point of this process is usually the commit of code by a developer. For every commit made, a git hook is configured to build in an automated manner new releases of ANASTACIA components and even build the whole framework on a staging environment.

The overall development and integration process in ANASTACIA will be supported by GitLab, through the project collaborative group <u>https://gitlab.com/ANASTACIA-project</u>, as GitLab provides out of the box capabilities for Continuous Build. In order to enable Continuous Integration on a repository, a simple process is needed, consisting of two main steps; a) the addition of a project configuration file in YAML format(.gitlab-ci.yml¹⁹) in the root folder of the repository b) the configuration of project to use a script that executes called Runner, so that in each commit or push, the CI pipeline will be triggered.

5.4.2.1 Release Management

As described in section 3.1, two major releases of the ANASTACIA framework are planned during the project duration. The releases of the framework will be deployed using specific versions of each developed component, using the configuration options that Docker compose file provided. Also, for the better organisation of these releases, we have created in GitLab dedicated Milestones and also other internal milestones for each component. The goal of this approach is to allow ANASTACIA partners to collaborate in order to create the planning for each release in terms of functionalities that should be provided and issues to be resolved.

Anastacia-project > Milestones			
Open 3 Closed 0 All 3		Due soon 🗸	New milestone
MS14 - Official integration planning milestone - Project Milestone 0 Issues - 0 Merge Requests (Expired) expired on Jan 1, 2018 IoTBrokerConnector	Close Milestone		0% complete
First Internal Integration Iteration - Mid of April - Project Milestone 0 Issues - 0 Merge Requests expires on Apr 20, 2018 IoTBrokerConnector	Close Milestone		0% complete
MS20- 1st Official Integration Milestone - Project Milestone 3 Issues - 0 Merge Requests expires on Jul 31, 2018 IoTBrokerConnector	Close Milestone		33% complete

¹⁹ https://gitlab.com/help/ci/yaml/README.md

Anastacia-project > Milestones > MS20- 1st Official Integration Milestone							33% complete
Open Milestone MS20- 1st Official Integration Milestone- expires on Jul 31, 2018 Close Milestone							Start date No start date
MS20- 1st Official Integration Milestone							Due date Jul 31, 2018 (6 mont
Project	C 2	pen issues	State	Due date expires on Jul 31, 2018			Issues 3 Open: 2 Closed: 1
Issues 3 Merge Requests 0 Participants 2 Labels 4							Total issue time spe No time spent
Unstarted Issues (open and unassigned)		Ongoing Issues (open and assigne	ed) 2	Completed Issues (closed) IoTBrokerConnector • Add IoTBrokerConnector contail image to the shared registry #3 (critical) (%)		Open: 0 C	Merge requests 0 Open: 0 Closed: 0
		IoTBrokerConnector · Definition of the re-subscirption process #2 discussion enhancement suggestion (#					
		IoTBrokerConnector · IoT-broker doesn't answer to subscriptions #1 enhancement @					

5.4.3 Source Code Quality Control

Another parameter of the validation of the developed software is the quality measurement of source code. Although, quality is somewhat subjective attribute and understood differently by different people, an independent organization, founded by the Software Engineering Institute at Carnegie Mellon University and the Object Management Group, called Consortium for IT Software Quality (CISQ²⁰) has defined a set of software structural quality characteristics. In the "House of Quality" model, these are "What's" that need to be achieved:

- **Reliability**: An attribute of structural solidity. Reliability measures the level of risk and the likelihood of potential application failures. It also measures the defects injected due to modifications made to the software.
- **Efficiency**: The source code is the element that ensures high performance once the application is in run-time mode. Efficiency is especially important for applications in high execution speed environments such as algorithmic or transactional processing where performance and scalability are paramount.
- **Security**: A measure of the probability of potential security breaches due to poor coding practices or architecture. This kind of breaches increases the risk of critical vulnerabilities that can damage a business.
- *Maintainability*: Maintainability includes the concept of adaptability and portability. It is very important to measure the maintainability for mission-critical applications, where each change is driven by tight schedules and is important to remain responsive during the changes. It is very crucial to keep maintenance costs under control.
- *Size*: The sizing of source code is a software characteristic that obviously impacts maintainability.

Sonar²¹ is an open source software quality platform. Sonar uses various static code analysis tools such as CheckStyle²², to extract software metrics, which then can be used to improve software quality. The results will be presented in deliverable D6.4 - Final Technical integration and validation Report.

²² <u>http://cruisecontrol.sourceforge.net</u>

²⁰ http://it-cisq.org/

²¹ http://www.sonarqube.org

In some case the usage of a centralized SonarQube installation might not be possible due legal reasons concerning source code rights. In that case responsible partners have to use their own SW quality tool (ideally SonarQube as quality assurance tool) in order to monitor and commonly agreed KPI's/Metrics.

5.4.3.1 Defined KPI's/Metrics

To reach an acceptable level of quality the goal for ANASTACIA project is to reach the following described KPI's when delivering to the integration environment. A first selection of the metrics and the KPI's has been done and based on our integration and testing process we will continuously monitor the results to the metrics and adapt the suggested KPI's if needed. The KPI's are especially important to be respected when a platform release is scheduled. The defined KPIs are the following;

- Number of violations against coding guidelines (critical, high, medium...) per component
 - Critical = 0, when providing a component for integration
 - High = no threshold, but have to be resolved in time
 - Medium: no threshold
 - Code Smells: no threshold
- Technical Dept = A specific target has not defined yet, but should be getting smaller for each iteration we deliver
- Density of comment lines =
 Comment lines / (Lines of code + Comment lines) * 100 : A specific target not defined yet, but we need each function/component to have an header with a description
- Density of duplication = Duplicated lines / Lines * 100 < 10%
- 100% passed unit tests when deliver code for integration
- Condition Coverage = Branch Coverage by unit tests > 40% for new code

5.4.4 Issues Management

Collecting in a formal way and managing in the issues that have been raised during the development, integration and testing of the platform is an important step of the developed cycle of any software product. For the issues found during development and technical tests of the platform, the consortium partners are using GitLab embedded issues management approach to store issues, create milestones and distribute the technical work needed to overcome these issues²³. For the better organization of the issues, specific categories (labels in GitLab) have been created and are used in order to map the issues with the platform components, as depicted in Figure 9.

²³ https://gitlab.com/anastacia-project/framework/issues

Anastacia-project > IoTBrokerConnector > Labels

Labels can	be applied to issues and merge red	quests. Star a label 1	to make it a priority label. Order the prioritized labels to change their relative priority, by dragging.				New label
Prioritized	I Labels						
= *	bug	Project Label	Issues · Merge requests	t	/	Ū	Subscribe
*	critical	Project Label	Issues - Merge requests	t	ø	۵	Subscribe
*	enhancement	Project Label	Issues - Merge requests	t	,	Ū	Subscribe
*	suggestion	Project Label	Issues - Merge requests	t	/	۵	Subscribe
*	documentation	Project Label	Issues - Merge requests	t		Ū	Subscribe
*	confirmed	Project Label	Issues - Merge requests	t	,	Ū	Subscribe
*	support	Project Label	Issues - Merge requests	t	/	Ū	Subscribe
*	discussion	Project Label	Issues - Merge requests	t	/	Ū	Subscribe
*	wontfix	Project Label	Issues • Merge requests	t	,	Ū	Subscribe

Figure 9. Issues Management for ANASTACIA components - Labels

Finally, in order to impose the time plan for addressing the reported issues, specific Milestones are used as descried in section 5.4.2.1. It is also important to state that the management of issues, labels and milestones is open to all technical partners and is done at repository level, thus changes are made easily when needed. The view of issues however can be aggregated at the root level of ANASTACIA in GitLab, therefore it is easy to have an overview of the issues of whole ANASTACIA framework, as shown in Figure 10.

Figure 10. Aggregated issues from all ANASTACIA components

6 CONCLUSIONS AND NEXT STEPS

The current document presented the integration and technical testing plan of the ANASTACIA framework, that is the outcome of the task T.6.1 that has been accomplished with the collaboration all technical partners of the consortium.

Having as starting point for the integration plan both the ANASTACIA Deliverable D1.3 and the work done in task T1.3, we identified the necessary integration points between components and, at the level that this was possible, we concluded on the details of the interfaces that need to be created. These components of ANASTACIA then will be integrated in such a way that they can support common business processes and data sharing across whole framework. For achieving this goal, we researched on different integration methods, and we tried to combine the desired characteristics in order to create an integration approach suitable for ANASTACIA. The integration in ANASTACIA is based on both direct communications between components (Star architecture) and asynchronous, loosely-coupled integration using a common message broker that is scalable by design (Apache Kafka), thus achieving characteristics of event-driven architecture and enable ANASTACIA for the proper supporting of production, detection, consumption of, and reaction to events.

As part of the integration plan, this document provides information regarding the releases of ANASTACIA, with the status of the components and the supported functionalities. It also includes the description of the deployment needs of the various components that will be integrated, so that a better consensus of the whole framework is shaped and proper planning can be done by the use case partners.

For the testing and technical validation of the ANASTACIA platform the "Product Quality Model" from ISO/IEC 25010:2011 has been used as a basis to identify attributes that can be measured and would make sense for ANASTACIA as framework and at component level. Due to the fact that ANASTACIA framework will be deployed and configured at a specific infrastructure for each use case, it is not easy to decide specific KPIs and target values. Nevertheless, an initial effort has been made in order to define this information in the cases this possible and help on the validation of the platform. Also, the definition of integration testing as part of ANASTACIA was provided in this document, along with the integration tests that have been identified so far. Results and also updates of both validation and testing plan will be provided in deliverable D6.4.

Finally, the suggested development cycle and the tools that can be used to support both the collaborative development and the integration of the discrete mechanisms have been provided. The selection of GitLab as basic tool will help the technical to coordinate and collaborate, as it can support our plans for source code management, container registry, continuous integration, and also issue management.

REFERENCES

- [1] Integrated Testing", http://msdn.microsoft.com/ens/library/12.aspx, 2009
- [2] K. Hammer, T. Timmerman, "Fundamentals of Software Integration", Jones and Bartlet Publishers, 2008
- [3] ANASTACIA Grant Agreement N°731558 Annex I (Part A) Description of Action, 2016
- [4] ANASTACIA Deliverable D1.3 Initial Architectural Design, 2017
- [5] ANASTACIA Deliverable D1.2 User-centred Requirement Initial Analysis, 2017
- [6] N. Josuttis, SOA in Practice. O'Reilly, 2007

