

ANASTACIA has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement N° 731558

and from the Swiss State Secretariat for Education, Research and Innovation.
This document only reflects the ANASTACIA Consortium’s view.

The European Commission is not responsible for any use that may be made of the information it contains.

D6.1
Initial Technical Integration and
Validation Report
This deliverable provides the output of Task 6.1. It provides information about
the integrated analysis of all software resources available and thereafter defines
necessary interfaces to integrate components. An integration plan of the discrete
framework's mechanisms and software components is also specified and
documented. In addition to the integration plan, a testing and technical
evaluation plan is provided.

Distribution level PU

Contractual date <28.02.2018> [M14]

Delivery date <23.03.2018> [M15]

WP / Task WP6 / T6.1

WP Leader UBITECH

Authors Giannis Ledakis (UBITECH), Ruben Trapero (ATOS),
Diego Rivera (MONT), Yacine Khettab, Ivan Farris
(AALTO), Dallal Belabed (THALES), Cédric Crettaz
(MAND), Jorge Bernal, Alejandro Molina (UMU), Rafael
Marín Pérez (ODINS), Alie El-Din Mady (UTRC), Enrico
Cambiaso (CNR), Ivan Vaccari (CNR)

EC Project Officer Carmen Ifrim
carmen.ifrim@ec.europa.eu

Project Coordinator Softeco Sismat SpA
Stefano Bianchi
Via De Marini 1, 16149 Genova – Italy
+39 0106026368
stefano.bianchi@softeco.it

Project website www.ANASTACIA-h2020.eu

mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/

Page 1 of 62

Table of contents

PUBLIC SUMMARY ... 4

1 Introduction ... 5

1.1 Aims of the document ... 5

1.2 Applicable and reference documents ... 5

1.3 Revision History ... 5

1.4 Acronyms and Definitions ... 6

2 Platform Integration Overview .. 7

2.1 Software Integration Approaches ... 7

2.2 ANASTACIA Integrated Framework Architecture .. 8

 The Envisioned Platform .. 8

 Integration Points .. 9

2.3 Detailed Description of the Interfaces .. 11

 Interfaces for Policy Set-up Activity .. 12

 Interfaces for Policy Orchestration and Enforcement ... 16

 Interfaces for Monitoring .. 18

 Interfaces for Reaction Activity ... 20

 Interfaces for Seal Creation ... 23

2.4 Technical Integration Mechanisms And Process ... 24

 Using Docker for Integration ... 25

 Integration at Interface Level .. 26

 Code Level Integration - Working on the same components .. 28

 Shared Knowledge ... 29

3 Platform Implementation and Integration Planning ... 30

3.1 Multi-Iteration/Release Plan ... 30

 1st Platform Release and Validation Iteration ... 31

 Final Version of the Platform and Validation Iteration ... 33

4 Platform Deployment Overview .. 37

5 Platform Testing and Validation Plan .. 39

5.1 Unit Testing.. 39

5.2 Testing for the Integrated Platform... 40

 Integration Tests .. 41

5.3 Validation for the Integrated ANASTACIA Platform .. 49

 The Product Quality Model ... 50

5.4 ANASTACIA Development Lifecycle ... 56

Page 2 of 62

 Source Code Management .. 56

 Continuous Integration .. 56

 Source Code Quality Control ... 58

 Issues Management ... 59

6 Conclusions And Next Steps .. 61

References ... 62

Index of figures
Figure 1. ANASTACIA architecture – Interface View ... 10

Figure 2. Sample Configuration of Swagger on a Spring boot application .. 27

Figure 3. Sample of Swagger UI ... 27

Figure 4. ANASTACIA project group in GitLab ... 29

Figure 5. The ANASTACIA development lifecycle combines the V-model with short, concurrent development
cycles ... 30

Figure 6. The ANASTACIA Milestones as part of the development plan ... 31

Figure 7. A product quality model view based on the ISO/IEC 25010:2011 standard 50

Figure 8. Release Management using GitLab .. 58

Figure 9. Issues Management for ANASTACIA components - Labels .. 60

Figure 10. Aggregated issues from all ANASTACIA components ... 60

Index of tables
Table 1. Policy Editor Tool -> Interpreter H2M (H2MI) ... 12

Table 2. Security Orchestrator -> Interpreter M2L (M2LI) .. 13

Table 3. Policy Interpreter-> Security Orchestrator .. 13

Table 4. Interpreter -> Security Enabler Provider (SEPPI) ... 14

Table 5. Orchestrator -> Reaction definition (RCI) .. 15

Table 6. Security Orchestrator <-> SDN controllers (SDNI) ... 16

Table 7. Security Orchestrator <-> NFV MANO modules (NFVI) ... 17

Table 8. Security Orchestrator <-> IoT controllers (IOTI) .. 18

Table 9. Orchestrator -> Monitoring definition (MCI) ... 19

Table 10. Monitoring Agents-> Monitoring Module (MDR) .. 19

Table 11. Monitoring -> Reaction definition (MVI) ... 20

Table 12. Reaction -> User/System Administrator definition (SAWI) ... 21

Table 13. Reaction -> Orchestrator definition (CSI) .. 22

Table 14. Reaction -> Seal Manager definition (SMMI) .. 23

Table 15. ANASTACIA integration mechanisms ... 24

Page 3 of 62

Table 16. ANASTACIA components’ status for first release (M19) ... 31

Table 17. ANASTACIA components’ status for final release (M36) ... 34

Table 18. Unit Test documentation template ... 40

Table 19. Identified and Planned Integration Tests .. 41

Table 20. Technical Characteristics and Sub-characteristics relevant to ANASTACIA technical validation 51

Table 21. Quantitative Evaluation Metrics selected for the ANASTACIA framework 52

Table 22. KPIs per component (part 1/2) .. 53

Table 23. KPIs per component (part 2/2) .. 54

Page 4 of 62

PUBLIC SUMMARY
The document presents the integration and technical testing plan of the ANASTACIA framework, that is the
outcome of the task T.6.1. The integration plan has been created using ANASTACIA Deliverable D1.3 as
starting point and, by identifying and specifying the necessary integration points between components, and
also by constructing the integration approach that will be followed. The supported functionalities that each
of the releases of ANASTACIA framework shall provide were identified, allowing the consortium to make
proper scheduling of both development and integration actions.

Analysis of existing models and standards has been done for the preparation of the technical validation of
ANASTACIA framework. Based on this analysis, the document provides initial definition of metrics and KPIs
for the technical validation of ANASTACIA as framework and also at component level. Also, the definition of
integration testing as part of ANASTACIA was provided in this document, along with integration test that
have been identified so far.

Finally, the suggested development cycle and the tools that can be used to support both the collaborative
development and the integration of the discrete mechanisms have been provided. The document presents
also the selection of GitLab as the basic tool that will help transforming the development and integration
plans to specific actions.

Page 5 of 62

1 INTRODUCTION

1.1 AIMS OF THE DOCUMENT

In this document we provide the output of the efforts of creating the integration, testing and technical
evaluation plan of ANASTACIA framework. For the creation of the integration plan technical partners
collaborated in many different occasions, especially for the definition of the necessary integration points
between components, but also for a common approach regarding testing and evaluation. The starting point
for the integration plan was ANASTACIA Deliverable D1.3 and the work done in task T1.3: Architectural
Design, continued with the specification and development of the mechanisms described in WP2, WP3, WP4
and WP5. The goal of creating the integration plan is to support the development by guiding the integration
of the discrete mechanisms and software components, with the agreement on identified interfaces, and the
usage of selected tools. Using these tools (especially GitLab) the actual integration will be carried in the next
months based on two major releases when the overall framework will be tested and evaluated. Finally, in
this document the development lifecycle scheme proposed by ANASTACIA is presented and includes source
code management, continuous integration, source-code quality control, release management and ticketing.

1.2 APPLICABLE AND REFERENCE DOCUMENTS

This document refers to the following documents:

• Grant Agreement N°731558 – Annex I (Part A) – Description of Action

• D1.2 – User-centred Requirement Initial Analysis

• D1.3 - Initial Architectural Design

1.3 REVISION HISTORY

Version Date Author Description

0.1 14.12.2017 Giannis Ledakis
(UBI)

Skeleton of expected contents

0.4 15.01.2018 Giannis Ledakis
(UBI)

Draft content in sections 2, 3 and 5

0.7 22.02.2018 Giannis Ledakis
(UBI)

First draft version with sample on section that required
input from partners

0.7.4 28.02.2018 ALL First integrated draft

0.8 12.03.2018 Giannis Ledakis
(UBI)

Updated version based on comments received in the
first draft

0.8.4 16.03.2018 ALL Second integrated draft

0.9 19.03.2018 Giannis Ledakis Version released for ATOS review

0.9.1 21.03.2018 Ruben Trapero
(ATOS)

Revised version

Page 6 of 62

1.0 23.03.2018 Giannis Ledakis
(UBI)

Final version released, ready to be delivered

1.4 ACRONYMS AND DEFINITIONS

Acronym Meaning

API Application Programming Interface

CI Continuous Integration

DSPS Dynamic Security and Privacy Seal

DTLS Datagram Transport Layer Security

ESB Enterprise Service Bus

ETSI European Telecommunications Standards Institute

HSPL High Security Policy Language

IoT Internet of Things

MANO Management and Orchestration

MMT Montimage Monitoring Tool

MSPL Medium Security Policy Language

MTTR Mean Time to Recovery

NFV Network Function Virtualization

OS Operating System

REST REpresentational State Transfer

RPC Remote Procedure Call

SDN Software Defined Networking

SIEM Security Information and Event Management

UI User Interface

VM Virtual Machine

XACML eXtensible Access Control Markup Language

Page 7 of 62

2 PLATFORM INTEGRATION OVERVIEW
A modern software system like ANASTACIA is a combination of different subsystems cooperating so that the
overall framework is able to deliver the needed functionalities. These subsystems need to be integrated in
such a way that they can support common business processes and data sharing across whole framework. An
effective integration of an application should provide efficient, secure and reliable data exchange between
multiple components. However, software Integration deals not only with computer network discipline but
also with other issues like the technological diversity of the components used in ANASTACIA, including
different communication protocols or messaging format (such as RESTful, XML-RPC, etc.) or even issues with
authentication and authorization. In the following section the different integration methods that have been
examined are provided, followed by the key elements of ANASTACIA integration.

2.1 SOFTWARE INTEGRATION APPROACHES

As integrations of multi component systems are an important part of software development, several different
methods of integration have been suggested. A few of the most important ones are presented by K. Hammer
and T. Timmerman in the “Fundamentals of Software Integration” [2] and are shortly provided here:

• “Vertical Integration”: The process of integrating subsystems according to their functionality by

creating functional entities. This method provides a quickly performed integration by involving only

the necessary vendors and therefore this method is cheaper in the short term. However, the cost of

integration can be significantly higher than the one seen in other methods, since in case of new or

enhanced functionality, the only possible way to scale the system is to implement a new entity. It is

not possible to reuse subsystems in order to have new or enhance existing functionalities.

• “Star Integration”: The process of integrating subsystems, where each system is interconnected to

each of the remaining subsystems. By observing from the perspective of the subsystem, which is

being integrated, the connections are like a star. The cost of using this method varies due to the

interfaces which the subsystems are exporting. If the subsystems are exporting heterogeneous or

proprietary interfaces, the integration costs can rise significantly. The needed integration time and

costs of the systems increase exponentially when adding new subsystems. This method often seems

preferable, due to the extreme flexibility of the reusability.

• “Horizontal Integration”: The process of integrating subsystems, where a subsystem is exclusively

responsible for the communication between other subsystems. Using this method, the number of

interfaces is only one per subsystem. This interface connects directly to this type of integration. It is

capable of translating the interface into another interface. This cuts the costs of integration and

provides extreme flexibility. In addition, it is possible to entirely replace one subsystem with another

one, which provides similar functionality but exports different interfaces, all this completely

transparent for the rest of the subsystems. If the cost of intermediate data transformation or the

cost of shifting responsibility over business logic is thought to be avoided, then the horizontal scheme

can be misleading.

• “Enterprise Application Integration”: The process of integrating systems that usually stipulate an

application-independent (or common) data format. This method usually provides a data

transformation service in order to convert between application-specific and common formats. This

is done in two steps: first, the adapter converts information from the application's format to the

common format and second, semantic transformations are applied on this (converting zip codes to

city names, splitting/merging objects from one application into objects in the other applications, and

so on).

Page 8 of 62

Of course, many other approaches exist and combinations of the different approaches are commonly used
depending on the actual needs and facts of the integrated systems. Another differentiation between
architectural principles is the level of coupling of the components, thus if loose coupling or tight coupling is
used. Loose coupling in broader distributed system design is achieved by the use of transactions, queues
provided by message-oriented middleware, and interoperability standards1.

To achieve loose coupling in a complete way there are many characteristics that should be provided by a
system and the components that this system includes. Some of them are the following, as suggested by [6]

• physical connections via mediator,

• asynchronous communication style,

• simple common types only in data model,

• weak type system,

• data-centric and self-contained messages,

• distributed control of process logic,

• dynamic binding (of service consumers and providers),

• platform independence,

• business-level compensation rather than system-level transactions,

• deployment at different times,

• implicit upgrades in versioning.

The usage of an Enterprise Service Bus (ESB) middleware became a popular way to achieve many of the
desired characteristics of loose coupling. However, over engineered and mispositioned ESBs can also have
the contrary effect and create undesired tight coupling and a central architectural hotspot2.

For this reason, in ANASTACIA we try to combine the desired characteristics of the different approaches and
create an integration that is based on both direct communications between components (Star architecture)
and asynchronous, loosely-coupled integration using a common message broker that is scalable by design3
(Apache Kafka). It is important to clarify that this approach helps us on achieving characteristics of event-
driven architecture and enable ANASTACIA for the proper supporting of production, detection, consumption
of, and reaction to events.

2.2 ANASTACIA INTEGRATED FRAMEWORK ARCHITECTURE

 The Envisioned Platform

An important role for the decision regarding the architectural approach followed in ANASTACIA was the
clarification of the platform vision regarding the way that the ANASTACIA as whole will be used. Based on
the analysis of initial requirements and the use cases reported in Deliverable D1.2, in Deliverable D1.3 five
main activities to be supported by the platform were identified, with each of them utilizing specific
components. For the integration planning it is important to clarify how each of these components
interconnects to achieve these identified activities that are shortly presented below;

• Security policy set-up activity. This is the initial process triggered once a security policy has been
defined by the user. In this process the policy has to be configured in the platform in order to be
enforced. The interpretation of the security policy claims, the configurations required to monitor the
security controls associated to a policy or the definition of thresholds to identify policy violations, are
some activities carried out by this process.

1 Pautasso C., Wilde E., Why is the Web Loosely Coupled? - http://www2009.eprints.org/92/1/p911.pdf
2 http://bulgerpartners.com/how-loosely-coupled-architectures-are-helping-the-modernization-of-legacy-software/
3 https://www.confluent.io/blog/apache-kafka-for-service-architectures/

http://www2009.eprints.org/92/1/p911.pdf

Page 9 of 62

• Security policy orchestration activity. Once the policy has been defined, it is necessary to enforce
the controls specified within the policy. To orchestrate the selected IoT/SDN/NFV-based security
enablers, appropriate interactions with the relevant management modules are required.

• Security monitoring activity. In this process the monitoring information is extracted from the devices
through monitoring agents and according to the security controls interpreted from the security
policy. In this activity, the monitoring data is filtered and aggregated in order to carry out its analysis
and the detection of anomalies.

• Security reaction activity. In this process the detected anomalies are evaluated to design counter
measures in order to mitigate the effects of attacks and potential threats.

• Dynamic security and privacy seal creation activity. In this process, relevant information about
detected threats, monitored information is evaluated to create a seal that determine the level of
security guaranteed/offered by an IoT platform.

The aforementioned activities, along with their sub-activities and resulting architecture of the platform are
described with detail to the deliverable D1.3[4] . In this deliverable the architecture will be presented in order
to identify and provide technical details about the needed integration points between the components that
will allow the platform integration.

 Integration Points

What is extremely important for the integration activities is the identification of the integration points. Due
to this importance, the needs for interfaces between the components have been identified early and there
has been effort on the concrete description of the interfaces in parallel with the architecture discussions. For
this reason, the main interfaces have been identified in D1.3. However, in this deliverable we provide updates
(MDR interface) and description of the interfaces with technical details that would lead to the realization of
the ANASTACIA architecture by a unified platform.

Figure 1 shows the ANASTACIA architecture which includes the interfaces between modules, and then more
details are provided for each of these interfaces.

Page 10 of 62

Figure 1. ANASTACIA architecture – Interface View

More specifically the interfaces introduced that were introduced in D1.3 and extended in this deliverable are
the following:

• High to Medium interface (H2MI): Interface between the User Plane and the Orchestration Plane used
for translating and refine policies. H2MI provide information at a high level of granularity. This interface
is also used internally by the Security Orchestrator to get details about the capabilities that needs to be
enforced within the IoT platform.

• Medium to Lower interface (M2LI): Interface between the User Plane and the Orchestration Plane used
for translating and refine policies. M2LI provides a lower level of granularity than the information
provided by H2MI. This interface is also used internally by the Security Orchestrator to get details about
the capabilities that needs to be enforced within the IoT platform.

• MSPL Reception Interface (MRI): This interface is used by the policy interpreter to send the MSPL to the
Security Orchestrator.

• Monitoring Configuration Interface (MCI): This interface is used from the security orchestrator in order
to configure monitoring parameters.

• Reaction Security Configuration Interface (RCI): Interface between the Orchestration plane and the
Monitoring and Reaction planes, used for the configuration of monitoring and reaction activities.

• IoT-oriented Security Enforcement Plane Interface (IOTI): This interface is used from the security
orchestrator in order to configure the IoT controller.

• SDN-oriented Security Enforcement Plane Interface (SDNI): Interfaces between the Security
Orchestrator and the SDN controllers. It provides the connectivity required among the Network Virtual
Functions, and some basic security reactions.

Page 11 of 62

• NFV-oriented Security Enforcement Plane Interface (NFVI): This interface allows managing the security
VNFs via the ETSI-oriented NFV MANO modules. The Security Orchestrator can request the enforcement
of the security VNFs according to the configurations generated by the policy refinement process.

• Security Alerts and Warnings Interface (SAWI): Interface between the Reaction module and the user
plane which is used for the notification to the User/System admin about relevant information regarding
alarms, countermeasures, etc.

• Countermeasures Suggestions Interface (CSI): Interface between the Reaction module and the
Orchestrator to exchange information about the countermeasures to be enforced in the IoT platform in
order to react to certain incident.

• Monitoring Verdicts Interface (MVI): Interface between the Monitoring module and the Reaction
module used for exchanging information about detected incidents.

• Security Enabler Provider Plugin Interface (SEPPI): Interface exposed by the Security Enablers Provider.
It is used to get an appropriate enabler plugin during the lower policy refinement done at the Policy
Interpreter, as well as providing the list of available security enablers.

• Seal Manager Metadata Interface (SMMI): The interface provides the requested information to evaluate
the security and the privacy in a real-time fashion. The security and privacy policies defined by the user
are stored inside the policies repository and an interface is available to retrieve and set them from the
seal manager.

In the following section, the detailed technical description of all the identified interfaces is presented based
on bilateral and general discussions between the technical partners.

2.3 DETAILED DESCRIPTION OF THE INTERFACES

This section gathers information about the interfaces required for the implementation of the integrated
solution of ANASTACIA by defining the communication between the components created in WP2-3-4-5.

The following subsections describe these interfaces (organized per activity) by detailing the following
information:

• Description: describes the purpose of the interface

• Component providing the interface: describes the component that is offering the described interface.

• Consumer components: describes the components that are using the described interface.

• Type of interface: REST, XML-RPC, GUI, Java API etc.

• Input data: describes how data that is required by the described interface (e.g.: Methods or Endpoints,
values and parameters of the interface)

• Output data: describes the data that is returned by the described interface (e.g.: the returned data of
methods or REST call)

• Constraints: Any security or authentication related topics regarding this interface, specifically the need
to use a secure transfer protocol. Also, any other constraints (e.g. specific prerequisites, data-types,
encoding, transfer rates) which apply to the interface.

• State: Synchronous/Asynchronous, Stream

• Responsibilities: Partner that is responsible for the implementation and usage of the interface

We have to mention that the the identified interfaces, their methods and parameters are part of ongoing
development and collaboration between partners, so future changes could be required. The final version of
the interfaces will be documented in deliverable D6.4 - Final Technical integration and validation Report.

Page 12 of 62

 Interfaces for Policy Set-up Activity

The following tables describe the interfaces involved in the set-up of a new policy, comprising the
interpretation of a security policy set-up at the editor, involving the interfaces H2MI (Table 1), M2LI (Table
2), SEPPI(missing reference to table), and the configuration of the monitoring and reaction modules which
involve interfaces MCI (Table 9) and RCI (Table 5). These tables extend and update the information gathered
in D1.3.

2.3.1.1 High to Medium Interface

Table 1. Policy Editor Tool -> Interpreter H2M (H2MI)

High to Medium interface (H2MI)

Description The interface allows requesting a policy refinement from a High level Security Policy
(HSPL) to a Medium level Security Policy (MSPL), as well as to request a policy
enforcement from a HSPL (avoiding to manually request M2L and MRI interfaces).

Component
providing the
interface

Policy Interpreter

Consumer
components

Policy Editor Tool

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the
method

Return Values of the
method

h2mrefinement

h2menforcement

JSON data with the HSPL
policy, codified in XML. A
suitable list of enablers
could be also provided.

JSON data with the MSPL
policies and a list of
candidate security
enablers.

Policy enforcement result.

Constraints Notice the JSON data parameters could contains more than the policy and the
enablers, like matching between devices address and its human readable names.

Responsibilities

o UMU

Page 13 of 62

2.3.1.2 Medium to Lower Interface

Table 2. Security Orchestrator -> Interpreter M2L (M2LI)

Medium to Lower interface (M2LI)

Description The interface allows to request a policy refinement from a Medium Level Security
Policy (MSPL) to a specific enabler configuration/task

Component
providing the
interface

Policy Interpreter

Consumer
components

Policy Editor Tool

Security Orchestrator

Type of Interface REST

State Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the
method

Return Values of the
method

m2ltranslate JSON data with MSPL
policy codified in XML and
the enabler name to
enforce it.

Enabler´s specific Security
control
configuration/Task.

Constraints M2LI uses the SEPPI interface in order to obtain the enabler plugin and performs the
M2L translation.

Responsibilities

o UMU

2.3.1.3 MPSL Reception Interface

Table 3. Policy Interpreter-> Security Orchestrator

MSPL Reception Interface (MRI)

Description This interface can be used by the policy interpreter to send the MSPL to the Security
Orchestrator.

Component
providing the
interface

Security Orchestrator

Page 14 of 62

Consumer
components

Policy Interpreter

Type of Interface REST

State Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Load_MSPL JSON data with MSPL
policy codified in XML and
the candidate security
enablers.

Acknowledgement of the
reception.

Constraints None

Responsibilities

o AALTO
o UMU

2.3.1.4 Security Enabler Provider Plugin Interface

Table 4. Interpreter -> Security Enabler Provider (SEPPI)

Security Enabler Provider Plugin Interface (SEPPI)

Description The interface allows requesting for a plugin which implements the MSPL to Enabler
translation.

Component
providing the
interface

Security Enabler Provider

Consumer
components

Policy Interpreter

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Page 15 of 62

getplugin

getenablers

Enabler´s name

Identified capabilities

Enabler´s MSPL->Security
control translator
software package
(Software package which
implements the MSPL to
Lower translation)

A list of candidate
Enablers.

Constraints The software must implement the method getConfiguration()

Responsibilities

o UMU (getplugin)
o THALES (getenablers)

2.3.1.5 Reaction Security Configuration Interface

Table 5. Orchestrator -> Reaction definition (RCI)

Reaction Security Configuration Interface (RCI)

Description This interface allows the Security Orchestrator to provide the Security Model-related
data to the Reaction Module. In general terms, this information will be composed by
the Capabilities of the Security Policy and the available countermeasures on the
network to react to a detected security issue.

Component
providing the
interface

Security Model Analysis (Reaction Module)

Consumer
components

 Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

setConfiguration The list of enforcing
capabilities and list of
available
countermeasures.

 Simple acknowledgement
in the reception of the
request (e.g., HTTP
response status code)

Constraints Once the Security Orchestrator has identified the capabilities expressed in the
security policy, the Security Orchestrator will inform the Reaction module about
these capabilities in order to correctly configure the countermeasures assessment

Page 16 of 62

process. The feedback received from the Security Orchestrator might also be used to
provide enhanced information to the Seal Management Plane of the ANASTACIA
platform.

Responsibilities

o THALES
o AALTO
o UTRC

 Interfaces for Policy Orchestration and Enforcement

The following interfaces are used for the enforcement of security policies in IoT devices. Three possible ways
of orchestrating or enforcing a policy can be used depending on the interface used:

• Policy enforcement using SDN controllers through the SDNI (Table 6)

• Policy enforcement using NFV-MANO modules through the NFVI (Table 7)

• Policy enforcement using IoT controllers through the IOIT (Table 8)

2.3.2.1 SDN-oriented Security Enforcement Plane Interface

Table 6. Security Orchestrator <-> SDN controllers (SDNI)

SDN-oriented Security Enforcement Plane Interface (SDNI)

Description This interface allows managing the SDN networking configuration via the SDN
controller(s). The Security Orchestrator can request the enforcement of the SDN
traffic flow rules received as outcome of the policy refinement process.

Component
providing the
interface

SDN controller(s) : ONOS

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Flow_dropping

Flow_mirroring

Flow_forwarding

JSON with the list of
parameters required to
manage the flows

JSON with method
execution results

Page 17 of 62

Constraints Regarding ONOS north-bound APIs, authentication based on user and password is
required for issuing commands. Additional security features can be enabled.

Responsibilities

o AALTO

2.3.2.2 NFV-oriented Security Enforcement Plane Interface

Table 7. Security Orchestrator <-> NFV MANO modules (NFVI)

NFV-oriented Security Enforcement Plane Interface (NFVI)

Description This interface allows to manage the security VNFs via the ETSI-oriented NFV MANO
modules. The Security Orchestrator can request the enforcement of the security
VNFs according to the configurations generated by the policy refinement process.

Component
providing the
interface

NFV MANO (Management and Orchestration) modules: OSM (under evaluation)

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Onboard/export Virtual
Network Function
Descriptor (VNFD)/
Network Service
Descriptor (NSD)

Create/Delete Network
Service (NS)

Execute configuration
primitives on Network
Services.

Data packages defining
NSD/VNFD.

Information about the NS
to manage

 Method execution results

Constraints OSM authentication is based on user and password is required for issuing commands.
Also, HTTPs is enabled. Additional security features can be considered.

Page 18 of 62

Responsibilities

o AALTO
o THALES

2.3.2.3 IoT-oriented Security Enforcement Plane Interface

Table 8. Security Orchestrator <-> IoT controllers (IOTI)

IoT-oriented Security Enforcement Plane Interface (IOTI)

Description This interface allows managing the configuration of IoT nodes via specific IoT
controllers. The Security Orchestrator can request the enforcement of the security
controls within the IoT nodes according to the configurations generated by the policy
refinement process.

Component
providing the
interface

IoT controllers

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

device/device_id

bootstrapping

iot_resource

PEMK key

IoT resource values/result
of the operation (turn off,
disable radio,
bootstrapping), in plain
text

Constraints The PEMK (PaC-EP Master Key) key could be acquired previously through an AAA
architecture.

Responsibilities

o UMU/OdinS

 Interfaces for Monitoring

The following tables describe the interfaces involved in the Monitoring processes. First, the configuration of
the configuration of the monitoring is provided by MCI interfaces (Table 9) and the collection of monitoring
data is described in the Monitoring Data Receiver (MDR) set of interfaces (Table 10) .

Page 19 of 62

2.3.3.1 Monitoring Configuration Interface

Table 9. Orchestrator -> Monitoring definition (MCI)

Monitoring Configuration Interface (MCI)

Description This interface allows configuring the Monitoring Module from the Security
Orchestrator. It is intended to provide the required parameters to refine the
detection of potential threats on the network.

Component
providing the
interface

Data Filtering Component (Monitoring Service)

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the
method

Return Values of the
method

setAnalysisParams The list of enforcing
capabilities and enforced
security policies.

Simple acknowledgement
in the reception of the
request (e.g., HTTP
response status code)

Constraints Once the Security Orchestrator has identified the capabilities expressed in the
security policy, the SO will inform the Monitoring module about these capabilities in
order to correctly configure the monitoring agents

Responsibilities

o UBITECH
o AALTO

2.3.3.2 Monitoring Data Receiver

Table 10. Monitoring Agents-> Monitoring Module (MDR)

Monitoring Data Receiver (MDR)

Description This integration point is needed in order to allow the Monitoring Agents to provide
their output to the Monitoring Module through the Data Filtering Component. It is
not a single interface but a collection of Kafka topic4 that will be used for the
collection of the data from a diverse set of monitoring agents that have or will be

4 https://kafka.apache.org/documentation/

Page 20 of 62

developed in the project duration. A Kafka topic is where data are published to by a
producer (entity creating data) and pulled from a consumer (entity consuming data)

Component
providing the
interface

Kafka Message Broker

Consumer
components

Data Filtering Component (Monitoring Service)

Type of Interface
Type of Kafka Topic depends of the Monitoring Agent

State
Asynchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

One topic per each
monitoring agent will be
used

N/A (topic values
depended on the
monitoring agents)

N/A (topic values
depended on the
monitoring agents)

Constraints Each monitoring agent should be able to connect to the Kafka Broker

Responsibilities

o UBITECH
o Partners providing monitoring agents (for creating the needed producer)

 Interfaces for Reaction Activity

The following interfaces are used for exchanging relevant data required for the fulfilment of a security policy
within an IoT platform. This includes:

• The notification of detected incidents between the Monitoring and the Reaction modules through the
MVI (Table 11)

• The notification of alerts and countermeasures from the Reaction module to the User/System admin
through the SAWI (Table 12)

2.3.4.1 Monitoring Verdicts Interface

Table 11. Monitoring -> Reaction definition (MVI)

Monitoring Verdicts Interface (MVI)

Description This interface is intended to provide the required monitoring information from the
Monitoring to the Reaction Module. The transferred data is mainly composed of the
verdicts of the security properties tested on the network.

Component
providing the
interface

Verdict and Decision Support System (Reaction Module)

Page 21 of 62

Consumer
components

Data Analysis (Monitoring Module)

Type of Interface
RPC or REST

State
Asynchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

backlogBolt JSON including: alarmID,
BacklogID, AlarmEvent.
Alarm event containing
related to the incident
detected.

None

Constraints None

Responsibilities

o MONT
o ATOS

2.3.4.2 Security Alerts and Warnings Interface

Table 12. Reaction -> User/System Administrator definition (SAWI)

Security Alerts and Warnings Interface (SAWI)

Description This interface will transfer the alerts and warnings from the Reaction Module to the
end-user interfaces. It is designed as a communication channel between the Reaction
Module and the ANASTACIA User Plane.

Component
providing the
interface

Security Alert Service (Reaction Module)

Consumer
components

End-user interface

Input data /
Output Data

Several options were considered;

1) Database (relational, or noSQL, to be evaluated in function of the data flow),
directly accessed from the user plane interfaces

2) JSON/XML format passed to the user plane

3) Syslog format passed to the user plane

Page 22 of 62

The first option was chosen in order to avoid complexity issues, but the need for the
other options will considered during the development of both reaction model and
the user plane components.

State
Asynchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Specific tables on the
database containing the
information

The set of detected
security issues (for
raiseAlert), and the
applied countermeasures
(for informReaction)

None

Constraints None

Responsibilities

o ATOS
o MONT
o CNR
o UTRC

2.3.4.3 Countermeasures Suggestions Interface

Table 13. Reaction -> Orchestrator definition (CSI)

Countermeasures Suggestions Interface (CSI)

Description This interface was conceived to transmit the set of suggested countermeasures from
the Reaction module to the Security Orchestrator

Component
providing the
interface

Security Orchestrator

Consumer
components

Mitigation Action Service (Reaction Module)

Type of Interface
 REST (MSPL)

State
Asynchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Page 23 of 62

informCountermeasures A list of the possible
countermeasures to
implement

A MSPL based file
containing details on
mitigation actions to be
deployed with all required
information. Some
information can be the
devices affected (IPs,
subnet) the attack to
mitigate, and other
information that is
currently being defined.

Constraints Following the usage of open standards, this interface is intended to use the OpenC2
format to inform the set of countermeasures that will be applied on the network.
High-priority, secure and reliable communication is considered important for this
interface.

Responsibilities

o AALTO
o ATOS

 Interfaces for Seal Creation

2.3.5.1 Seal Manager Metadata Interface

The following interface SMMI (Table 14) is used for the exchange of the relevant data that the seal manager
needs in order to create the Dynamic Security and Privacy Seal.

Table 14. Reaction -> Seal Manager definition (SMMI)

Seal Manager Metadata Interface (SMMI)

Description The interface provides the requested information to evaluate the security and the
privacy in a real-time fashion. The security and privacy policies defined by the user
are stored inside the policies repository and an interface is available to retrieve and
set them from the seal manager.

Component
providing the
interface

Dynamic Security and Privacy Seal

Consumer
components

Security Alert Service, Security Model Analysis

Type of Interface
Usage of STIX/TAXII (Structured Threat Information Expression and Trusted
Automated eXchange of Indicator Information). Alternative options considered are
he direct access to mysql database or is using Kafka broker and JSON format

State
Asynchronous

Page 24 of 62

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

computeSecuritySeal TO BE DEFINED none

Constraints TO BE SPECIFIED

Responsibilities

o ATOS
o MAND
o MONT

2.4 TECHNICAL INTEGRATION MECHANISMS AND PROCESS

As it was shown in the architecture diagram of Figure 1 and in the explained integration approach,
ANASTACIA Platform consists of (1) components responsible for processing input data provided by the
monitored streams, (2) components that are responsible for making decision and reaction and (3)
components that provide useful information to the end user. All these components are integrated both using
direct communications between components (Star architecture) and asynchronous, loosely-coupled
integration using a common message broker when it is needed.

Table 15. ANASTACIA integration mechanisms

Multiple Facets Integration

At Deployment Level Configuration of components’ deployment using
Docker compose

Dedicated container registries using Gitlab

At Interfaces Level Documentation of Interfaces using Swagger

At Code Level Dedicated code repositories using Gitlab

At Knowledge Level Dedicated folder for collaboration on the shared
repository of consortium

Usage of Slack

For the technical integration in ANASTACIA we need many different components to be deployed and
communicate using dedicated interfaces or the common message broker. For achieving this we are using
Docker Compose5 files. Docker Compose is a tool for defining and running multi-container Docker
applications, based on a YAML file that is used to configure application’s services. Then, with a single
command, all services can be created and started using the configuration file. Following this approach doesn’t
mean that all components of ANASTACIA should be containerized and deployed using Docker. Some services
may still be provided from a centralized point or through dedicated physical or virtual machines. What is
managed through Docker compose configuration file (and by respecting some development guidelines) is the
way that all components are possible to be deployed and communicate.

In order to make the whole integration flow to work based on Docker Compose in an autonomous and
continuous way for ANASTACIA, we will try to create Docker based container images for the components
developed, whenever this possible. In comparison to virtual machine that needs to include infrastructure

5 https://docs.docker.com/compose

Page 25 of 62

configuration and the whole OS, the containers image is a lightweight, stand-alone, executable package that
includes everything needed to run a piece of software, including the code, a runtime, libraries, environment
variables, and configuration files. A container is a runtime instance of an image—what the image becomes in
memory when actually executed. In comparison to a Virtual Machine (VM) that is completely isolated, a
container is partially isolated from the host environment, as it uses the kernel calls and commands of the
host OS, but accessing host files and ports is possible only if configured to do so.

Images are created using Docker and are possible to be configured using Dockerfile. A Dockerfile contains
instructions on how to create the desired image based on pre-existing images. More information regarding
the creation process is provided in section 2 that follows.

The pre-existing images can be stored and retrieved from image repositories called Docker registries. Such a
Docker Registry is used for ANASTACIA and is a stateless, highly scalable server-side application that allows
storing and distributing Docker images. It works similar to Git, as collaborators can login and then push or
pull the images that they or other partners are creating.

The configuration of the multiple available components of the platform that are communicating through the
interfaces (mostly REST) can be helped with Docker compose files, through the usage of Environmental
Variables for configuration. Most important parameters that are usually needed for this action are service
urls, ports or any other information needed for the acknowledgment and configuration between services.
With environmental variables existing in each Docker compose based deployment, the service developer
shall utilize the available variables at code level in order to avoid the hardcoding of parameters that make
applications difficult to deploy and, in the end, develop and test a project with many different partners in
remote locations, like ANASTACIA.

 Using Docker for Integration

Dockerizing an application is a very diverse procedure and multiple approaches can be followed, for this
reason dedicated guidelines and examples have been shared among the technical partners.

First step for collaborative working was that each partner needs to join the ANASTACIA project page in
GitLab6, that will be used for the hosting of private code and container repositories, as well tools for the
support of CI activities. For hosting integration related material of the whole framework, as docker-
compose.yml files or the needed docker images7, a project called framework has been created.

2.4.1.1 Creating Docker Images for components

An application may be “dockerized” by using a variety of approaches. For the full scope of possibilities refer
to the official documentation also given in the appendix. Here we will cover the most common guidelines:

An application may depend upon multiple components. A LAMP stack for example needs at the minimum a
MySQL and Apache Web Server. A single container can contain the whole stack, or a separate container for
each component may be used. Using a single container is generally easier, while using multiple containers is
cleaner. Each partner may dockerize components as needed, with some basic suggestions like using separate
containers for databases, web applications and web servers. If a lightweight server is used a single container
can be used, like the case of Spring boot applications.

For dockerizing an application, a Dockerfile is needed. The Dockerfile contains instruction on how to construct
the instance of an image (called container). The Dockerfile contains directives like:

6 https://gitlab.com/anastacia-project

7 registry.gitlab.com/anastacia-project/framework

https://gitlab.com/anastacia-project

Page 26 of 62

• defining a base image to be used (e.g. Ubuntu 16). ANASTACIA developer can login and use
ANASTACIA registry order to re-use the images already created as base images, by using the
command (FROM registry.gitlab.com/ANASTACIA-project/framework/<image_name>:tag)

• adding local files to the file system of the container

• commands to be executed upon initialization of the container (e.g. packages to be installed)

• Ports to be exposed

• Commands that launch the applications

2.4.1.2 ANASTACIA Docker Registry usage

A Docker registry has been setup for the purposes of ANASTACIA development using Gitlab. Developers that
want to push an image to the repository should first tag it with the repository and then push it using the
following commands.

$ docker login registry.gitlab.com

$ docker build -t registry.gitlab.com/ANASTACIA-project/framework/<image_name>:<tag> .

$ docker push registry.gitlab.com/ANASTACIA-project/framework/<image_name>:<tag>

where:

• image_name: the name of the image. Typically, this is the same as the local image name.

• tag: Optional as parameter but need to properly support the continuous integration
workflow. It is used for creating versions of the same image. For the first iteration version 0.1
will be used as tag for all images. Also, if you not specify the tag, the docker will automatically
set the tag latest.

Similarly, an image can be pulled by executing:

$ docker pull registry.gitlab.com/ANASTACIA-project/framework/<image_name>:<tag>

 Integration at Interface Level

For the better coordination of the development of the interfaces that are used by the Interfaces we can use
Swagger. This way each partner will be responsible to provide the appropriate documentation for the
interface usage and this documentation will be generated automatically in order to allow the consumer of
the interface to edit/adapt to the REST body changes.

As seen in the following Figure 2, Swagger is easily added at the code of the developed service. It supports
all major languages, and in the example below of a Spring based Java application it identifies REST
components automatically.

Page 27 of 62

Figure 2. Sample Configuration of Swagger on a Spring boot application

Swagger then produces the appropriate JSON for the documentation. Based on this JSON, a dedicated UI can
render nicely the whole documentation, while it is also possible to create client libraries for most major
languages.

Figure 3. Sample of Swagger UI

Page 28 of 62

Swagger UI is deployed as part of the development, production or use case deployments using the following
code in the Docker-compose file.

 swagger:

 container_name: "ANASTACIA_swagger"

 image: swaggerapi/swagger-ui

 environment:

 API_URL: "http://localhost:8080/v2/api-docs"

 ports:

 - 8070:8080

2.4.2.1 Asynchronous Operations

For interfaces that need asynchronous operation mode for their communication, a message broker can be
used. The publish/subscribe (pub/sub) messaging pattern is realized using destinations known as topics.
Publishers send messages to the topic and subscribers register to receive messages from the topic. Any
messages sent to the topic are automatically delivered to all subscribers. In ANASTACIA we are using Apache
Kafka8 as message broker for the integration of monitoring agents feedback to the Data Filtering and
Preprocessing component, while it might also be considered its use between components needing
asynchronous communication.

 Code Level Integration - Working on the same components

In the cases that multiple partners need to work on the same components, code level integration is supported
with a code repository that is available for all partners that need to work together or to store their
component’s code safety. The source code repositories are available at: https://gitlab.com/ANASTACIA-
project

8 https://kafka.apache.org/

https://gitlab.com/anastacia-project
https://gitlab.com/anastacia-project

Page 29 of 62

Figure 4. ANASTACIA project group in GitLab

 Shared Knowledge

The last part to cover for the technical integration and collaboration mechanism is how to allow partners that
are working in distributed manner to collaborate. This important parameter is often performed without
setting strict rules, but in the case of ANASTACIA we will try to collect the shared knowledge in order to ease
the development and integration. Towards these directions the following steps have been performed.
Initially a slack 9 team for ANASTACIA has been created, and dedicated channels for each work package have
been created. Then, in order to achieve integration planning goals, a document collecting all the details of
the technical integration, together with instructions and examples had been created and uploaded to the
common repository of the project. This document will be constantly updated when needed. Finally, with
GitLab it is also possible to create wiki pages for each of the component in order to allow partners developing
a component to provide the needed information and instructions in a structured format.

9 https://slack.com/

Page 30 of 62

3 PLATFORM IMPLEMENTATION AND INTEGRATION PLANNING
In ANASTACIA we perform two cycles of technical and user evaluations during the project period, while the
development of the platform and its evaluation will be performed in parallel. The results of the validation
and the evaluation need to be fed back into the development cycle, improving the user experience and
detecting open issues. Therefore, after the evaluation will be performed, the resulting issues need to be
discussed by the consortium and the list of functional requirements for the next software development
iteration will be updated accordingly.

As depicted in Figure 5, the development and testing lifecycle combines the V-model10 process with short,
concurrent development cycles. Component testing is performed frequently, and integration testing that
depends on the interfaces of two or more partners is performed occasionally, and specifically when changes
on interfaces are done. Due to the effort and cost of full system tests and user testing, these evaluations
must be scheduled with a lower frequency than component and integration tests. Also, they are performed
independently of the shorter component development cycles, based on a predefined release plan.

Figure 5. The ANASTACIA development lifecycle combines the V-model with short, concurrent development cycles

For the whole platform development, a two-cycle process will be followed: a first cycle will be performed
with the initial requirements definition, the design and development of first demonstrators, and the first
tests performed by the end users. A second cycle will follow with the revisions based on the users’ feedback,
the design and development of the final demonstrators and the final tests and evaluations of end users and
final users[3] .

However, smaller iterations with changes on the architectural design and the development will be used
through the project duration. This continuous process will also be documented with revised versions of the
official reports for requirements analysis (D1.4 due on M23) and architecture (D1.5 due on M36).

3.1 MULTI-ITERATION/RELEASE PLAN

Based on the plan of having to two releases of ANASTACIA framework, the consortium had to make decisions
regarding the specific functionalities that will be supported on each release, in order to coordinate the
development, iteration and testing process. Meanwhile the integrations between components has starter in
order to allow the iterative implementation of the platform and assure the delivery of the first version on
M19.

The final version of the integrated platform will be delivered on M36 and will include all the individual
functionalities per components and extend the integration of the first version to support the functionalities
provided in the final version of the components.

10 https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html

Page 31 of 62

Figure 6. The ANASTACIA Milestones as part of the development plan

 1st Platform Release and Validation Iteration

The first release of ANASTACIA is dictated by the Milestone MS20 that is due on M19 and the goal is to
complete the “first cycle of integration and technical validation”. After that, by the end of M20 and according
the milestone “MS23- First iterative cycle of development completed”, all the validation results will be taken
under account for the closure of the first cycle of development of all components, in order to start working
into the second-and final- release of the platform.

 Table 16. ANASTACIA components’ status for first release (M19)

Component Responsible

Partner

(Subcomponent)

Status for First Release

Policy Editor Tool UMU First implementation covering the policy model for

the first main identified use cases.

Interpreter UMU A first implementation comprising the H2M

refinement and M2L translation processes for the

first main identified use cases.

Security Enablers Provider OdinS (DTLS

proxy)

First development of DTLS proxy for enabling secure

channels between IoT devices. Creation of the policy

plugin for the enforcement by Orchestrator.

OdinS (AAA

Architecture)

First development of security mechanisms for

providing authentication and authorization in the IoT

networks. Creation of the policy plugins for the

enforcements by Orchestrator.

OdinS (Network

Authenticator)

First development of Network Authenticator for

enabling secure bootstrapping of IoT devices.

Creation of the policy plugin for the enforcement by

Orchestrator.

Page 32 of 62

UMU (IPTABLES) First development of filtering capabilities using the

IPTABLES enabler.

UMU(IoT

Controller)

First implementation of power management,

bootstrapping and IoT honeynet capabilities.

UMU (SDN ONOS

NB & SDN ODL

NB)

First implementation of filtering and forwarding

capabilities.

UMU (Cooja) First implementation of IoT honeynet translation and

deployment.

UBITECH (Kippo) First implementation of the ssh honeynet enabler.

Security orchestrator AALTO First implementation of the Security Orchestrator

incorporating the different SDN and NFV features.

IoT controllers OdinS / UMU First development and integration with the

Orchestrator component for enabling a subset of

security actuations over IoT devices .

First implementation of the IoT controller

northbound/southbound endpoints in order to cope

with the first main identified use cases.

NVF orchestrators AALTO Upgrade to Open Source Mano Release 3. (TESTING)

Definition of the relevant VNFD (Virtual Network

Function Descriptor) and NSD (Network Service

Descriptor) for each security appliance.

SDN controllers AALTO SDN driver has been updated, in order to better

support the new functionalities according to the use

cases.

Monitoring Agents OdinS Integration of IoT-Broker with Data Filtering for

providing 2 different types of monitoring data such as

sensor data and attacks notifications.

MONT Integration of MMT-Probe into the Kafka Broker,

providing the extracted information to all Kafka

subscribers

ATOS Integration with three main sources of sensors: (1)

security sensors deployed in the network,(2) UTRC

Data analysis tool and (3) the Montimage Monitoring

Tool. Implementation of interface for the reception

of logs from these three sources. Creation of plugins

Page 33 of 62

for processing the events received from these

sources. Normalization of events to be correlated.

Data Filtering and pre-

processing Component

UBITECH Integration with the Data Analysis components for

providing filtered output and with 3 different types of

monitoring data as input; IoT devices data, Network

events, security events. Aggregation of data and

filtering of

Data Analysis Component MONT Integration of the MMT-Security Module with the

Atos’ XL SIEM tool, using the syslog format required

by Atos’ tool.

ATOS Interpretation of normalized events. Storage of the

normalized events in a database, which will be

available for the Security and Privacy Seal module.

Correlation of events looking for security incidents.

Generation of security alerts, along with the criticality

of the alert. Notification of the alert to the Verdict

and Decision Support System.

Security Model Analysis

Component

THALES Interpretation of reaction capabilities received from

the orchestration at Reaction set-up time.

Verdict and Decision

Support System

ATOS Initial definition of the inputs for the risk assessment

evaluation carried out as part of the decision support

system. Definition of the criteria for the decision

support. Integration of the format used for the

exchange description of the reactions.

Mitigation Action Service ATOS, MONT Definition of a data format for the exchange of

reactions information between the Reaction module

and the Orchestration module.

Security Alert Service ATOS, CNR Initial deployment of a graphical dashboard that

integrates information about events received

Dynamic Security and

Privacy Seal component

MAND, DG, AS Dynamic Security and Privacy Seal implementation

partially completed

Dynamic Security and

Privacy Seal User Interface

MAND, DG, AS GUI of Dynamic Security and Privacy Seal

implementation partially completed

 Final Version of the Platform and Validation Iteration

The final version of ANASTACIA Framework will be delivered at the end of the project, by M36. This version
will be fully integrated and the technical validation of this final version of ANASTACIA framework will be
delivered, as part of milestone “MS32 - Second iterative cycle of development completed and validated”.

Page 34 of 62

Table 17. ANASTACIA components’ status for final release (M36)

Component Responsible

Partner

(subcomponent)

Status for Final Release

Policy Editor Tool UMU Final implementation covering the main identified

use cases, allowing to model policies through the GUI

and request their enforcement.

Interpreter UMU Final implementation comprising the H2M

refinement and M2L translation processes for the

main identified use cases.

Security Enablers Provider OdinS (DTLS

proxy)

Final integration of DTLS proxy to enable the dynamic

deployment by NVF orchestrator.

OdinS (AAA

Architecture)

Final integration of all AAA security mechanisms to

enable the dynamic deployment by NVF orchestrator.

OdinS (Network

Authenticator)

Final integration of Network Authenticator to enable

the dynamic deployment by NVF orchestrator.

UMU (IPTABLES) Final development of filtering capabilities using the

IPTABLES enabler in order to cope with the main

identified use cases.

UMU (IoT

Controller)

Final implementation of power management,

bootstrapping and IoT honeynet capabilities.

UMU (SDN ONOS

NB & SDN ODL

NB)

Final implementation of required networking

capabilities by the use cases.

UMU (Cooja) Final implementation of IoT honeynet translation and

deployment as VNF, from different IoT architecture

topologies.

UBITECH (Kippo) First implementation of the ssh honeynet enabler.

Security orchestrator AALTO Final implementation of the Security Orchestrator as

a virtual instance covering the defined use cases.

Page 35 of 62

IoT controllers OdinS / UMU Final development and integration with the

Orchestrator component for enabling all security

actuations over IoT network.

Final implementation and integration of the IoT

controller northbound/southbound endpoints in

order to cope with the main identified use cases.

NVF orchestrators AALTO Final version of Open Source Mano with the relevant

VNF and NS descriptors and the final version of the

OSM driver.

SDN controllers AALTO Final version of the ONOS controller with the relevant

underlying architecture and the final version of the

ONOS driver.

Monitoring Agents OdinS

Final development and integration of all attacks

notifications provided by IoT broker and AAA

architecture when detect malicious behaviours

according to use cases proposed in ANASTACIA

project.

MONT Integration of the Adapted version of the MMT-Probe

to support all the IoT protocols involved in the

ANASTACIA use cases.

ATOS Implementation of new plugins for the incorporation

of new sources of events, including new virtual

security services.

Data Filtering and pre-

processing Component

UBITECH Creation and Integration of the configuration

interface (MCI) with appropriate platform mechanism

that need to refine the parameters of filtering.

Finalization of appropriate models used for filtering

and pre-processing of data.

Data Analysis Component ATOS Incorporation of cross correlated alarms that

integrates different events from different sources for

the generation of more accurate alarms.

Security Model Analysis

Component

THALES Incorporation of new reaction capabilities included in

the second stage of the project

Verdict and Decision

Support System

ATOS Complete creation of a Risk Assessment engine

within the decision support system for the selection

of mitigation actions.

Page 36 of 62

Mitigation Action Service MONT Implementation of the standard language to

communicate the set of computed countermeasures

to the Security Orchestrator.

ATOS Complete integration between the Orchestrator and

the Reaction Module using the data structure used

for the exchange of reaction information.

Security Alert Service ATOS, CNR Incorporation of alerts, configuration of the decision

support service, visualization of reports, interfaces

for the configuration of monitoring, alerting and

reaction components.

Dynamic Security and

Privacy Seal component

MAND, DG, AS Dynamic Security and Privacy Seal implementation

completed

Dynamic Security and

Privacy Seal User Interface

MAND, DG, AS GUI of Dynamic Security and Privacy Seal

implementation completed

Page 37 of 62

4 PLATFORM DEPLOYMENT OVERVIEW
The deployment of ANASTACIA as platform will be executed in close collaboration with the use case partners
of the project, as the platform will be tailored to the needs of each use case. However, for development and
demonstration purposes a test installation of the core platform components has been provided in a cloud
infrastructure using OpenStack based virtual machine software.

Technical specifications or requirements of existing components

Component(s) Memory Storage Processor Type OS

Platform Message
Brokerage

8GB 20GB 2VCPU VM hosted in
OpenStack

Ubuntu 16.04

Data Filtering and
pre-processing
Component

Co-hosted in the same VM with Message Broker

Monitoring
Agents

Atos 8Gb max 50Gb A normal
Intel i5

(minimum)

On premises VM
hosted in VMWare
or Virtualbox or
hosted in a Cloud

Ubuntu based

Data Analysis
Component

16Gb min 100Gb Intel Xenon
2CPU

VM hosted in a
Cloud hosting

Ubuntu based

Verdict and
Decision Support
System

16Gb min 100Gb Intel Xenon
2CPU

VM hosted in a
Cloud hosting (can
be hosted the
same VM as
above)

Ubuntu based

Mitigation Action
Service

16Gb min 100Gb Intel Xenon
2CPU

VM hosted in a
Cloud hosting (can
be hosted the
same VM as
above)

Ubuntu based

Security Alert
Service

16Gb min 100Gb Intel Xenon
2CPU

VM hosted in a
Cloud hosting (can
be hosted the
same VM as
above)

Ubuntu based

IoT Broker 16Gb min 100Gb Intel Xenon
2CPU

VM hosted in a
Cloud hosting

Ubuntu 16.04

AAA Architecture 16Gb 40Gb Intel Xenon
2CPU

VM hosted in a
Cloud hosting

Ubuntu 16.04

Page 38 of 62

Network
Authenticator

8Gb 20Gb Intel Xenon
2CPU

VM hosted in IoT
network

Ubuntu 16.04

Montimage
Monitoring Tool

4Gb 20Gb 2VCPUs VM ready to be
deployed in the
monitored
network.

Ubuntu 16.04

Security
Orchestrator

2Gb 20Gb 1vCPU VM hosted in
Aalto’s Openstack
Cluster

Ubuntu 16.04

SDN controller
(ONOS)

8Gb 40Gb 4vCPU VM hosted in
Aalto’s Openstack
Cluster

Ubuntu 16.04

Open Virtual
Switch

1Gb 10Gb 1vCPU VM hosted in
Aalto’s Openstack
Cluster

Ubuntu 16.04

NFV Orchestrator
(Open Source
Mano -OSM)

8Gb 120Gb 8vCPU VM hosted in
Aalto’s Openstack
Cluster

Ubuntu 16.04

DSPS Web server 4-8Gb 20Gb 4-8VCPU VM hosted in MI
server

Ubuntu 16.04

DSPS servers 4Gb 25Gb 4VPCU VM hosted in MI
server

Ubuntu 16.04

Policy Interpreter 2GB 20GB 1vCPU VM hosted in UMU
server

Ubuntu 16.04

Page 39 of 62

5 PLATFORM TESTING AND VALIDATION PLAN
This section presents the platform testing and validation as part of the overall evaluation strategy in the
context of ANASTACIA. Here, the integration and testing plan will be analysed, and the actual testing and
evaluation results will be provided in deliverables D6.2, D6.3. For the creation of the overall testing and
validation plan analysis of standards and common methodologies has been made, like the IEEE 82911 for the
creation of test plan and the ISO 25001012 for the identification of important attributes that we should
measure for the evaluation of the overall framework and the individual components.

Therefor in ANASTACIA we define the following facets of testing:

• Unit testing that can be performed by the separate development teams when new functionalities

are developed.

• Integration testing performed by the development teams in order to test the smooth co-operation

between the various layers and components. The integration tests and also any unit tests that will

be created for the project validation will be continuously executed based on continuous integration

(CI) scheme that is documented in section 5.4.

• Stress testing can be performed for the benchmarking of the system or specific components. Due to

the fact that ANASTACIA framework targets to a TRL of 5 according to project DoA [3] , stress tests

will be a supplementary action that can be performed for the components that partners believe

would benefit from this action.

• Validation based on the requirements’ coverage (functional completeness and correctness).

• User acceptance testing will ensure the usability of the system will be performed during the use case

evaluation and documented in deliverables D6.3 and D6.6.

5.1 UNIT TESTING

An important part of both the integration and the validation process is the execution of unit tests. Unit tests
are the tool to test the functional modules of software. A suitable unit test is applied to the piece of code
without any dependencies on other code parts. Therefore, the developer of the particular layers will test
their components by means of unit tests before integrating them into the full application. In the case of
ANASTACIA framework, development is based on the development of standalone components but also on
the adaptation and integration of existing components. Therefore, unit testing at the lowest level not a
primordial part of the general testing methodology of ANASTACIA, as the main focus is the integration testing.

Unit testing will be used as an additional mechanism of validating the developed code, as a task that each
component developer can use in order to verify proper functionality before the integration of the component
in ANASTACIA Framework. Usually, all unit-tests are executed during the build-process, unless they are
defined to be ignored (marked as @Ignored for Java applications). This practically means that each release
of a component has is guaranteed regarding its stability and the same time allows developers to better
control the level of test coverage on their components.

The exercise of creating unit tests is still in early stages and the documentation of Unit tests will be provided
with more details for all components in deliverable D6.4. An indicative unit test developed in Java code for
ANASTACIA is presented in the Listing below.

11 https://standards.ieee.org/findstds/standard/829-2008.html
12 https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

@Test

public void testGetrulesFromInputData () {

Page 40 of 62

Finally, we introduced a template for reporting the unit tests that will be used for the collecting Unit tests
information for deliverable D6.4.

Table 18. Unit Test documentation template

Unit Test Case Documentation Form

Unit Test Reference Code #UT1

Component Data Filtering and pre-processing Component

Tester Junit

Short Description

This test case is responsible for creating, fetching and deleting rules based on incoming monitoring data.

Input Data

DataInputType Object

Output Data

Success response code

Apart from the tests that guarantee the functional correctness of the components, it is important to make
tests at integration level for a complete testing and validation process. This means that integration tests shall
be created and used for all identified interfaces and to some major platform functionalities. This can be done
using unit testing on the methods that are implementing the integration, in order to make them part of a
continuous integration and continuous testing process.

5.2 TESTING FOR THE INTEGRATED PLATFORM

Integration testing is the phase in software testing in which individual software modules are combined and
tested as a group. Integration testing in ANASTACIA can also be seen as an extension of unit testing. The main
idea of integration testing is to start from two components to test the interface between them. In some
cases, more than two components can participate in a common test. Eventually this process will be expanded
in order to test all the integrated components of the platform.

The goal of integration testing is to identify problems that occur when components are combined. By using
a test plan that suggests the usage of unit tests before combining components, the errors discovered when

 List<DataInput> datainputs = dataRepo.findAll();

 for (DataInput datainput: datainputs) {

 List<Attack> rules = ruleRepository.findByExpressionID(datainput);

 if (rules != null) {

 rules.stream().forEach((rule) -> {

 logger.log(Level.INFO, "Rule name {0}", rule.getRuleName());

 });

 }

 }

}//EoM

Page 41 of 62

in integration tests are most probably related to the interface between them. This method reduces the
number of possibilities of errors to a far simpler level of analysis.

In general, integration testing can be done in a variety of ways but the following are three of the most
common strategies:

• The top-down approach of integration testing requires the highest-level modules to be tested and

integrated first. This allows high-level logic and data flow to be tested early in the process and it

tends to minimize the need for drivers. However, the need for stubs complicates test management

and low-level utilities are tested relatively late in the development cycle. Another disadvantage of

top-down integration testing is its poor support for early release of limited functionality.

• The bottom-up approach requires the lowest-level units to be tested and integrated first. These units

are frequently referred to as utility modules. By using this approach, utility modules are tested early

in the development process and the need for stubs is minimized. The downside, however, is that the

need for drivers complicates test management and high-level logic and data flow are tested late. Like

the top-down approach, the bottom-up approach also provides poor support for early release of

limited functionality.

• The third approach, sometimes referred to as the umbrella approach, requires testing along

functional data and control-flow paths. First, the inputs for functions are integrated in the bottom-

up pattern discussed above. The outputs for each function are then integrated in the top-down

manner. The primary advantage of this approach is the degree of support for early release of limited

functionality. It also helps minimize the need for stubs and drivers. The potential weaknesses of this

approach are significant, however, in that it can be less systematic than the other two approaches,

leading to the need for more regression testing.

For the integration testing of ANASTACIA, we chose the last option (umbrella approach), as it combines the
best of both approaches. It allows all participating entities, to execute simultaneously multiple testing in
several components. In the next section the basic integration tests that have been identified and tested so
far, are presented.

 Integration Tests

For ensuring the proper integration of the components of ANASTACIA, we will use tests that can assess the
functionalities that require multiple components. In these tests, methods from different components are
combined in order to achieve the needed functionality. Therefore, the focus is given to the combination of
pieces that create a basic integrated functionality. In the following Table 19 the tests that have been
identified so far, in order to cover the integration aspects of the project, are presented.

Table 19. Identified and Planned Integration Tests

Test setAnalysisParamsTest

Interface(s) Tested Components Used Short Description

Monitoring Configuration
Interface (MCI)

Security orchestrator, Data
Filtering and pre-processing
Component

Testing of the proper functioning of
editing the parameters that affect
the data filtering

The security orchestrator is responsible for enforcing relevant security policies in the data plane. This can
be either using SDN, NFV, the IoT controller or a combination of those. For the NFV part, the security
orchestrator will make sure that the security enablers are up and configured by interacting with the NFV
orchestrator. When it comes to SDN, using the northbound API, receiving an acknowledgment of the

Page 42 of 62

request means that the security policy has been properly enforced. The same is applicable for the IoT
mitigation actions (The reception of the acknowledgement confirms the policy enforcement).

Test SubscribeData-from-IoT-network

Interface(s) Tested Components Used Short Description

 IoT broker and Data Filtering
and pre-processing Component

Testing of the data exchange of
sensors values and attack
notifications

The Data Filtering and pre-processing Component subscribes to the IoT broker to receive new data from
sensors. IoT Broker return subscription response. This response is used to exchange new data between IoT
broker and Data Filtering and pre-processing Component.

Test NetworkAuthentication

Interface(s) Tested Components Used Short Description

 Network Authenticator, IoT
device and Orchestrator

Testing the bootstrapping
process to authenticate a new
device in the IoT network.

When each IoT device is switched ON, the device sends a message including its identifier to request the
authentication in the network. The network authenticator verifies the identifier to enable the
communication. If the verification is ok, the network authenticator sends a message including the IP of the
new device and the DTLS key generated in the bootstrapping process towards the Orchestrator.

Test GetCapabilityToken

Interface(s) Tested Components Used Short Description

Page 43 of 62

 AAA Architecture, Network
Authenticator and IoT device

Testing the query of capability
tokens to authorize the data
publication in IoT broker

The IoT device sends a query including the publication action towards the IoT broker for requesting a
capability token. The AAA Architecture verifies the authorization of that device according to XACML
policies. If the authorization is ok, the AAA Architecture responds an ACK message including the capability-
token towards the IoT device. The Network Authenticator acts as a bridge between IoT device and AAA
Architecture.

Test VerifyCapabilityToken

Interface(s) Tested Components Used Short Description

 IoT device and IoT broker Testing the verification of
capability tokens to authorize the
data publication in IoT broker

The IoT device sends a message including data and capabilityToken. The IoT broker verifies the
capabilityToken before publishing the data in MongoDB. The IoT broker sends a ACK message towards the
IoT device.

Test NetworkAuthentication

Interface(s) Tested Components Used Short Description

 Network Authenticator, IoT
device and Orchestrator

Testing the bootstrapping
process to authenticate a new
device in the IoT network.

When each IoT device is switched ON, the device sends a message including its identifier to request the
authentication in the network. The network authenticator verifies the identifier to enable the
communication. If the verification is ok, the network authenticator sends a message including the IP of the
new device and the DTLS key generated in the bootstrapping process towards the Orchestrator.

Test DTLS-activation

Interface(s) Tested Components Used Short Description

 DTLS proxy and IoT controller Testing the activation of secure
channel using DTLS protocol

The IoT controller sends a message including the IP address of IoT device and a shared-key to DTLS proxy
which opens a secure channel with the IoT device.

Test

Interface(s) Tested Components Used Short Description

 Data analysis and Data Filtering
pre-processing

Testing that the security event
are correctly normalized when

Page 44 of 62

received from the Data Filtering
and pre-processing

The Data Filtering component sends a probe event to the Data analysis including the basic information:
source of attacked devices, detination of the attack, type of attack, timestamp.

Test

Interface(s) Tested Components Used Short Description

MVI Data Analysis and Verdict and
Decision Support system

Testing that security events are
correctly correlated and alarms
are generated

The Data Analysis will correlate events that derive into the generation of alarms. The test wll use a simple
rule set at the Decision Support system that will trigger a simple alarm for a single event sent from the
Data Analysis.

Test

Interface(s) Tested Components Used Short Description

CSI Mitigation Action Service and
Security Orchestrator

Testing that the information
required to trigger a reaction is
correctly

Page 45 of 62

The Mitigation Action Service will create a reaction message describing the incident to mitigate and the
reaction chosen. The test consist in checking that all the information required to enforce the mitigation is
correctly included in the reaction message.

Test

Interface(s) Tested Components Used Short Description

RCI Security Orchestrator and
Security Model Analysis

Testing that the information
about reaction available at the
platform is correctly received by
the Reaction module

The Security Orchestrator will send a message to the Security Model Analysis listing the reactions that are
enforceable by the platform. The test will check the appropriate reception of the information.

Test

Interface(s) Tested Components Used Short Description

SAWI Security Alert Service The test will show a simple event
and a simple alert in a dashboard
at the system admin side.

The incidents detected and the event received by the monitoring module will be displays in a GUI. A simple
event and simple events will be displayed to check the correct visualization of the events.

Page 46 of 62

Test

Interface(s) Tested Components Used Short Description

 Platform devices and sensors,
Monitoring agents

The test will show the correct
reception of monitoring data
from the platform to the
monitoring agents

The test will check the correct communication between sensors and devices deployed at the IoT platform.

Test MMT Integration test (Monitored Data General Interface – MDGI)

Interface(s) Tested Components Used Short Description

 IoT Network, MMT-IoTBroker,
MMT-Probe, MMT Security,
Data Filtering and
preprocessing Component

Testing of the integration of MMT
solution into the ANSTACIA
Platform, using the Monitoring
Data General Interface

Page 47 of 62

Approach A

Approach B

NOTE: Two possible approaches are possible here:

• Approach A: The general ANASTACIA Architecture establishes that the data should be sent from
the Agents to the Data Filtering and Pre-processing component, to be sent from this module to
the analysis tool. This approach utilizes MMT’s capability to use Kafka Brokers to publish the
information extracted by MMT-Probe (using DPI techniques), making it available to all analysis
tools. In particular, the MMT-Security can use this information from the Kafka Channel in order to
test the security properties. The verdicts of these analyses will also be published in the Kafka
Broker in order to be used other analysis tools (in particular, the XL SIEM Tool).

• Approach B: In this approach, MMT-Probe both publishes the information on Kafka and sends it
directly to MMT-Security. Once the Security analyses have been performed, the verdicts are also
published to Kafka.

The first approach has been selected.

Test

Interface(s) Tested Components Used Short Description

SMMI Dynamic Security and Privacy
Seal

The test will display the different
kinds of data provided by the
modules developed in the frame
of WP4.

The detected threats and the corresponding events transmitted from WP modules to the DSPS server will
be shown in the DSPS GUI. The test is separated in several parts, depending on the source of the data,

Page 48 of 62

their format and the information contained. Of course, this test will include the validation of the data
described using STIX/TAXII.

Test HSPL policy definition

Interface(s) Tested Components Used Short Description

- Policy Editor Tool Testing the proper HSPL definition
from the Policy Editor Tool

To instantiate HSPL policies through the Policy Editor Tool and verify the file generated is compliant with
the HSPL scheme.

Test HSPL policy refinement

Interface(s) Tested Components Used Short Description

H2MI Policy Interpreter, Security
Enabler Provider

Testing the proper HSPL refinement

To perform HSPL policy refinements, verifying:

1. Non-enforceable results
2. Enforceable-results, verifying MSPL generated are correct and compliant with the MSPL scheme.

Page 49 of 62

Test MSPL policy translation

Interface(s) Tested Components Used Short Description

M2LI Policy Interpreter, Security
Enabler Provider, Security
Orchestrator

Testing the proper MSPL translation
into a security enabler
configuration.

To perform MSPL policy translations for the main identified security enablers, verifying:

1. Non-enforceable results
2. Enforceable-results, verifying the generated configuration is correct for the specific technology.

5.3 VALIDATION FOR THE INTEGRATED ANASTACIA PLATFORM

For the evaluation of the quality of the developed platform we selected a popular standard as basis, namely
the ISO/IEC 25010:2011 “Systems and software engineering - Systems and software Quality Requirements

Page 50 of 62

and Evaluation (SQuaRE) - System and software quality models”13. In more detail, the ISO/IEC 25010:2011
defines as stated in its official website:

A quality in use model (in our case Actual Usage Evaluation) composed of five characteristics (some of which
are further subdivided into sub-characteristics) that relate to the outcome of interaction when a product is
used in a particular context. This system model is applicable to the complete human-computer system,
including both computer systems in use and software products in use.

A product quality model (in our case Technical Evaluation) composed of eight characteristics (which are
further subdivided into sub-characteristics) that relate to static properties of software and dynamic
properties of the computer system. The model is applicable to both computer systems and software
products.

Since the technical assessment of ANASTACIA framework will not only be based on the software elements
that will be delivered, but also the perceived usefulness and appropriateness will be assessed by the use
cases, the technical validation on ANASTACIA can be conducted using a subset of the product quality model
of the ISO 25010 and defined Key Performance Indicators (KPIs) based.

 The Product Quality Model

The product quality model describes the internal and external measures of software quality. Internal
measures describe a set of static internal attributes that can be measured. The external measures focus more
on software as a black box and describes external attributes that can be measured.

Figure 7. A product quality model view based on the ISO/IEC 25010:2011 standard

In general, this model evaluates software quality using a structured set of characteristics (each of them
including other sub-characteristic), which are the following:

1. Functional suitability - The degree to which the product provides functions that meet stated and
implied needs when the product is used under specified conditions.

2. Performance efficiency - The performance relative to the amount of resources used under stated
conditions.

3. Compatibility - The degree to which two or more systems or components can exchange information
and/or perform their required functions while sharing the same hardware or software environment.

4. Operability - The degree to which the product has attributes that enable it to be understood, learned,
used and attractive to the user, when used under specified conditions.

13 http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

Page 51 of 62

5. Reliability - The degree to which a system or component performs specified functions under specified
conditions for a specified period of time.

6. Security - The degree of protection of information and data so that unauthorised persons or systems
cannot read or modify them and authorised persons or systems are not denied access to them.

7. Maintainability - The degree of effectiveness and efficiency with which the product can be modified.
8. Portability - The degree to which a system or component can be effectively and efficiently transferred

from one hardware, software or other operational or usage environment to another.

The next table showcases the sub-characteristics of each category and indicates their relativity to the
ANASTACIA framework.

Table 20. Technical Characteristics and Sub-characteristics relevant to ANASTACIA technical validation

Sub-characteristics Definition Relation to ANASTACIA
integrated platform

validation

Functional suitability

Functional
completeness

Degree to which the set of functions covers all the
specified tasks and user objectives.

YES

Functional
correctness

System provides the correct results with the needed
degree of precision.

YES

Functional
appropriateness

The functions facilitate the accomplishment of
specified tasks and objectives.

NO

Performance efficiency

Time behaviour Response, processing times and throughput rates of
a system, when performing its functions, meet
requirements.

YES

Resource utilisation The amounts and types of resources used by a
system, when performing its functions, meet
requirements.

YES

Capacity The maximum limits of a product or system
parameter meet requirements.

NO

Reliability

Maturity System meets needs for reliability under normal
operation.

YES

Page 52 of 62

Availability System is operational and accessible when required
for use.

YES

Fault tolerance System operates as intended despite the presence
of hardware or software faults.

YES

Recoverability System can recover data affected and re-establish
the desired state of the system is case of an
interruption or a failure.

YES

5.3.1.1 ANASTACIA framework: Product Quality Evaluation Framework

Based on the tables presented in the previous sections that reveal which criteria could be measured during
the ANASTACIA framework operation, and based on the fact that the ISO/IEC 25010:2011 standard does not
define specific attributes (measuring ways) for each one of the sub-characteristics, the following list of
indicators has been devised in order to allow the technical assessment of the ANASTACIA framework. It needs
to be noted that due to the nature of the project and based on the operation conditions of the pilots, some
of the below mentioned indicators are considered optional, as their measurement might not be possible/ not
produce meaningful results.

Table 21. Quantitative Evaluation Metrics selected for the ANASTACIA framework

Sub-characteristics KPIs Calculation Type

Functional completeness Portion of functional
requirements covered

(Completed high priority functional
requirements / Total Number of high
priority requirements) * 100 %

Functional correctness Portion of functional
requirements covered without
reported bugs, after tests

(Completed functional requirements of
high priority without bugs / Total
Number of high priority requirements)
* 100 %

Time behaviour

Average Latency (Total Response Time)/(No. of
Requests)

Throughput (Total No. of Kilobytes)/(Total Time of
Operation)

Resource utilisation

Mean % CPU Utilisation (Σ (% CPU utilisation probes))/(No. of
probes)

Max. Memory Used No. of max Megabytes of RAM
Memory recorded

Max. Processing Power Used max % CPU utilisation recorded

Maturity

Max. Concurrent Users Supported No. of Max. Concurrent Users
Recorded

Simultaneous Requests No. of Simultaneous Requests

Page 53 of 62

Availability

% Monthly Availability 1- ((Downtown Time Minutes)/(Month
Days*24*60))

Error Rate (No. of Problematic Requests)/(Total
Number of Requests)

Fault tolerance

Number of Software problems
identified without affecting the
platform

No. of Non Critical Software Errors

Recoverability

Mean time to recover from
software problems

(Total Recovering Time due to
Software Issues)/(Total Software
Issues resulting to recovery)

As ANASTACIA components have very diverse nature, it is not easy to use common measurement and KPIs
for all. Therefore, in the following tables Table 22 and Table 23 we try to identify the suitable KPIs for each
of these components. A dash means that the metric shall be examined in next stages, while N/A means that
the metric is not applicable.

Table 22. KPIs per component (part 1/2)

 Functional
Completeness
and Correctness

Average Latency Throughput Mean %
CPU
Utilisation

Max.
Memory
Used

Max.
Processing
Power Used

Policy Editor
Tool

N/A <1s N/A - - -

Interpreter - Policy
refinement and

translation
processes for a
basic security
policy should

take < 2s

- - - -

Security
Enablers
Provider

- Depends on the
enablers (e.g.

Latency resolve
a authorization
query should be

<10s)

- - Should be
minimized,

but
depends
on the
overall

input load
that will be

provided

-

Security
orchestrator

66% Depends on the
desired security

policy to be
enforced

1GBpS Low 1Gb 50%

NVF
orchestrator

s

60% Depends on the
desired security

policy to be
enforced

1GBpS High 16Gb 85%

SDN
controllers

70% Depends on the
desired security

policy to be
enforced

1GBpS Medium 8Gb 70%

Page 54 of 62

Data
Filtering and

pre-
processing

Component

N/A Latency should
be <1s

Should be
high but

depends on
the

installation

Medium Should be
minimized,

but
depends
on the
overall

input load
that will be

provided

85%

Security
Alert Service

Integrity and
certain

reception of
exchanged
messages

Latency < 1s - Should be
minimized.

- -

Dynamic
Security and
Privacy Seal
component

Functional,
completed,

correct

Latency < 1s - Should be
minimized.

- -

Dynamic
Security and
Privacy Seal
User
Interface

Functional,
completed,

correct

The latency
should not

affect the user
but depends on

the
communication
protocol used
between the

DSPS Web
server and the
user’s terminal
(for instance 3G

or 4G).

- Should be
minimized.

- -

ANASTACIA
Platform as
whole

>90% functional
completeness

and correctness

Platform
latency <1s in
general cases

N/A N/A N/A N/A

Table 23. KPIs per component (part 2/2)

 Max.
Concurrent
Users
Supported

Simultaneous
Requests

% Monthly
Availability

Error
Rate

Number of
Software
problems
identified
without
affecting
the
platform

Mean time
to recover
from
software
problems

Policy Editor Tool N/A >10 >99% Low - -

Interpreter N/A >10 >99% Low -

Security Enablers
Provider. AAA
Architecture

N/A >10 >99% Low - -

Page 55 of 62

Security Enablers
Provider. Network
Authenticator

N/A >10 >99% Low - -

Security Enablers
Provider. DTLS proxy

N/A >10 >99% Low - -

Security Enablers
Provider

N/A
(Internal

Component

>20 >99% Low 0 Few
minutes

Security orchestrator N/A
(Internal

Component

>20 >99% Low 0 Few
minutes

NVF orchestrators N/A
(Internal

Component

>20 >99% Low 0 Few
minutes

SDN controllers N/A
(Internal

Component)

>20 >99% Low 0-multiple
(depends

on the
architecture

of the
network)

Few
minutes

Monitoring Agents N/A
(Internal

Component)

N/A >99% Moderate 0 Few
minutes

Data Filtering and
pre-processing
Component

N/A >300 >99% Low

few hours

Data Analysis
Component

N/A
(Internal

Component

>20 >99% Low 0 Few
minutes

Security Model
Analysis Component

N/A
(Internal

Component

>20 >99% Low 0 Few
minutes

Verdict and Decision
Support System

N/A
(Internal

Component

>20 >99% Low 0 Few
minutes

Mitigation Action
Service

N/A
(Internal

Component

>20 >99% Low 0 Few
minutes

Security Alert Service N/A
(Internal

Component

>10 >99% Very Low 0 Few
minutes

Dynamic Security and
Privacy Seal
component

N/A >10 >99% Low 0 Few
minutes

Dynamic Security and
Privacy Seal User
Interface

More than
20 users on

the same
instance

>10 >99% Low 0 Few
seconds:
an error
message
can be

displayed
to the
users.

Page 56 of 62

ANASTACIA Platform
as whole

>10 N/A
(depends on
the request

type)

>99 Low 0 Few
minutes

(all service
must
start)

5.4 ANASTACIA DEVELOPMENT LIFECYCLE

From a technical point of view, developing an integrated framework like ANASTACIA through the
combination of the developed artefacts is a difficult challenge, especially when trying also to guarantee the
quality of the software. For this reason, the identified integration plan is enhanced with the alignment of the
way that developers work in the project, through the definition of descriptive steps for the development,
technical integration and deployment of components. This proposed development lifecycle scheme for
ANASTACIA includes source code management, continuous integration, source-code quality control, release
management and ticketing, and is presented in the following section.

 Source Code Management

For the collaborative and distributed development of software, the usage of a common Version Control
System (VCS) and a dedicated code repository is required. A VCS refers to a repository of files, usually for the
files of source code of software, with monitored access. Every change made to the source is tracked, along
with who made the change, why they made it, and references to problems fixes, or enhancements
introduced, by the change. Modern code repositories and VCSs allow developers to effortlessly work in the
same project by providing merging, branching and storing of code functionalities, and the same time provide
many functionalities that help collaborative development. Some of the most commonly used Code
Repositories are CVS14, SVN15 , Mercurial16 and Git17.

In ANASTACIA we have selected Git as it is a distributed revision control system (every Git working directory
is a full-fledged repository with complete history and full version-tracking capabilities, independent of
network access or a central server) that is very popular and many online repositories exist in order to
accelerate the development work and avoid the overhead of private installation. Git is very fast, provides
branching capabilities as core functionality and since most operations are local there is no network latency
involved.

Online code repositories as a service, like GitHub, Gitlab or Bitbucket, cover a broad aspect of functionalities,
including code repositories with versioning systems and team collaboration tools. Our selection for
ANASTACIA is Gitlab, due to ease to create multiple repositories under a single group that is created for
ANASTACIA18, but also due to the offering of container registry, continuous integration and issues
management, functionalities that as described in the following sections are part of the ANASTACIA
development lifecycle.

 Continuous Integration

The development and the deployment of ANASTACIA are based on a Continuous Integration (CI) process. CI
is a software engineering approach of merging all developer committed copies to a shared registry and test
it automatically on each commit or on a regular time (usually every day- nightly builds) to increase software
quality since the early stages of development. It is used in software development to automate and improve

14 http://www.nongnu.org/cvs/

15 https://subversion.apache.org/

16 http://mercurial.selenic.com/

17 http://www.git-scm.com/
18 https://gitlab.com/anastacia-project

Page 57 of 62

the process of software integration. The goal of CI is to ensure that code changes are not breaking the whole
solution and allowing rapid and safe deployment of newer versions to production, as it ensures the proper
functioning through automated testing. The starting point of this process is usually the commit of code by a
developer. For every commit made, a git hook is configured to build in an automated manner new releases
of ANASTACIA components and even build the whole framework on a staging environment.

The overall development and integration process in ANASTACIA will be supported by GitLab, through the
project collaborative group https://gitlab.com/ANASTACIA-project, as GitLab provides out of the box
capabilities for Continuous Build. In order to enable Continuous Integration on a repository, a simple process
is needed, consisting of two main steps; a) the addition of a project configuration file in YAML format(.gitlab-
ci.yml19) in the root folder of the repository b) the configuration of project to use a script that executes called
Runner, so that in each commit or push, the CI pipeline will be triggered.

5.4.2.1 Release Management

As described in section 3.1, two major releases of the ANASTACIA framework are planned during the project
duration. The releases of the framework will be deployed using specific versions of each developed
component, using the configuration options that Docker compose file provided. Also, for the better
organisation of these releases, we have created in GitLab dedicated Milestones and also other internal
milestones for each component. The goal of this approach is to allow ANASTACIA partners to collaborate in
order to create the planning for each release in terms of functionalities that should be provided and issues
to be resolved.

19 https://gitlab.com/help/ci/yaml/README.md

https://gitlab.com/anastacia-project

Page 58 of 62

Figure 8. Release Management using GitLab

 Source Code Quality Control

Another parameter of the validation of the developed software is the quality measurement of source code.
Although, quality is somewhat subjective attribute and understood differently by different people, an
independent organization, founded by the Software Engineering Institute at Carnegie Mellon University and
the Object Management Group, called Consortium for IT Software Quality (CISQ20) has defined a set of
software structural quality characteristics. In the “House of Quality” model, these are "What’s" that need to
be achieved:

• Reliability: An attribute of structural solidity. Reliability measures the level of risk and the likelihood

of potential application failures. It also measures the defects injected due to modifications made to

the software.

• Efficiency: The source code is the element that ensures high performance once the application is in

run-time mode. Efficiency is especially important for applications in high execution speed

environments such as algorithmic or transactional processing where performance and scalability are

paramount.

• Security: A measure of the probability of potential security breaches due to poor coding practices or

architecture. This kind of breaches increases the risk of critical vulnerabilities that can damage a

business.

• Maintainability: Maintainability includes the concept of adaptability and portability. It is very

important to measure the maintainability for mission-critical applications, where each change is

driven by tight schedules and is important to remain responsive during the changes. It is very crucial

to keep maintenance costs under control.

• Size: The sizing of source code is a software characteristic that obviously impacts maintainability.

Sonar21 is an open source software quality platform. Sonar uses various static code analysis tools such as
CheckStyle22, to extract software metrics, which then can be used to improve software quality. The results
will be presented in deliverable D6.4 - Final Technical integration and validation Report.

20 http://it-cisq.org/
21 http://www.sonarqube.org
22 http://cruisecontrol.sourceforge.net

http://cruisecontrol.sourceforge.net/

Page 59 of 62

In some case the usage of a centralized SonarQube installation might not be possible due legal reasons
concerning source code rights. In that case responsible partners have to use their own SW quality tool (ideally
SonarQube as quality assurance tool) in order to monitor and commonly agreed KPI´s/Metrics.

5.4.3.1 Defined KPI´s/Metrics

To reach an acceptable level of quality the goal for ANASTACIA project is to reach the following described
KPI´s when delivering to the integration environment. A first selection of the metrics and the KPI´s has been
done and based on our integration and testing process we will continuously monitor the results to the metrics
and adapt the suggested KPI´s if needed. The KPI’s are especially important to be respected when a platform
release is scheduled. The defined KPIs are the following;

• Number of violations against coding guidelines (critical, high, medium…) per component

o Critical = 0, when providing a component for integration

o High = no threshold, but have to be resolved in time

o Medium: no threshold

o Code Smells: no threshold

• Technical Dept = A specific target has not defined yet, but should be getting smaller for each

iteration we deliver

• Density of comment lines =

Comment lines / (Lines of code + Comment lines) * 100 : A specific target not defined yet, but we

need each function/component to have an header with a description

• Density of duplication = Duplicated lines / Lines * 100 < 10%

• 100% passed unit tests when deliver code for integration

• Condition Coverage = Branch Coverage by unit tests > 40% for new code

 Issues Management

Collecting in a formal way and managing in the issues that have been raised during the development,
integration and testing of the platform is an important step of the developed cycle of any software product.
For the issues found during development and technical tests of the platform, the consortium partners are
using GitLab embedded issues management approach to store issues, create milestones and distribute the
technical work needed to overcome these issues23. For the better organization of the issues, specific
categories (labels in GitLab) have been created and are used in order to map the issues with the platform
components, as depicted in Figure 9.

23 https://gitlab.com/anastacia-project/framework/issues

Page 60 of 62

Figure 9. Issues Management for ANASTACIA components - Labels

Finally, in order to impose the time plan for addressing the reported issues, specific Milestones are used as
descried in section 5.4.2.1. It is also important to state that the management of issues, labels and milestones
is open to all technical partners and is done at repository level, thus changes are made easily when needed.
The view of issues however can be aggregated at the root level of ANASTACIA in GitLab, therefore it is easy
to have an overview of the issues of whole ANASTACIA framework, as shown in Figure 10.

Figure 10. Aggregated issues from all ANASTACIA components

Page 61 of 62

6 CONCLUSIONS AND NEXT STEPS
The current document presented the integration and technical testing plan of the ANASTACIA framework,
that is the outcome of the task T.6.1 that has been accomplished with the collaboration all technical partners
of the consortium.

Having as starting point for the integration plan both the ANASTACIA Deliverable D1.3 and the work done in
task T1.3, we identified the necessary integration points between components and, at the level that this was
possible, we concluded on the details of the interfaces that need to be created. These components of
ANASTACIA then will be integrated in such a way that they can support common business processes and data
sharing across whole framework. For achieving this goal, we researched on different integration methods,
and we tried to combine the desired characteristics in order to create an integration approach suitable for
ANASTACIA. The integration in ANASTACIA is based on both direct communications between components
(Star architecture) and asynchronous, loosely-coupled integration using a common message broker that is
scalable by design (Apache Kafka), thus achieving characteristics of event-driven architecture and enable
ANASTACIA for the proper supporting of production, detection, consumption of, and reaction to events.

As part of the integration plan, this document provides information regarding the releases of ANASTACIA,
with the status of the components and the supported functionalities. It also includes the description of the
deployment needs of the various components that will be integrated, so that a better consensus of the whole
framework is shaped and proper planning can be done by the use case partners.

For the testing and technical validation of the ANASTACIA platform the “Product Quality Model” from ISO/IEC
25010:2011 has been used as a basis to identify attributes that can be measured and would make sense for
ANASTACIA as framework and at component level. Due to the fact that ANASTACIA framework will be
deployed and configured at a specific infrastructure for each use case, it is not easy to decide specific KPIs
and target values. Nevertheless, an initial effort has been made in order to define this information in the
cases this possible and help on the validation of the platform. Also, the definition of integration testing as
part of ANASTACIA was provided in this document, along with the integration tests that have been identified
so far. Results and also updates of both validation and testing plan will be provided in deliverable D6.4.

Finally, the suggested development cycle and the tools that can be used to support both the collaborative
development and the integration of the discrete mechanisms have been provided. The selection of GitLab as
basic tool will help the technical to coordinate and collaborate, as it can support our plans for source code
management, container registry, continuous integration, and also issue management.

Page 62 of 62

REFERENCES
[1] Integrated Testing“, http://msdn.microsoft.com/ens/library/12.aspx, 2009

[2] K. Hammer, T. Timmerman, “Fundamentals of Software Integration”, Jones and Bartlet Publishers,
2008

[3] ANASTACIA Grant Agreement N°731558 – Annex I (Part A) – Description of Action, 2016

[4] ANASTACIA Deliverable D1.3 - Initial Architectural Design, 2017

[5] ANASTACIA Deliverable D1.2 – User-centred Requirement Initial Analysis, 2017

[6] N. Josuttis, SOA in Practice. O'Reilly, 2007

