

ANASTACIA has received funding from the 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ
Horizon 2020 research and innovation programme under Grant Agreement N° 731558

and from the Swiss State Secretariat for Education, Research and Innovation.
¢Ƙƛǎ ŘƻŎǳƳŜƴǘ ƻƴƭȅ ǊŜŦƭŜŎǘǎ ǘƘŜ !b!{¢!/L! /ƻƴǎƻǊǘƛǳƳΩǎ ǾƛŜǿΦ

The European Commission is not responsible for any use that may be made of the information it contains.

5сΦп
Final Technical integration and
validation Report
This deliverable presents the final results of ANASTACIA Task 6.1 -
Technical integration and validation. Revised version of D6.1 after
intermediate evaluation. The updated technical specifications,
development outcomes and testing results of the Integrated
ANASTACIA Platform, are provided.

Distribution level PU

Contractual date 30.09.2019 [M33]

Delivery date 11.12.2019 [M36]

WP / Task WP6 / T6.1

WP Leader UBITECH

Authors Giannis Ledakis, Konstantinos Theodosiou
(UBITECH), Jesús Villalobos, Ruben Trapero
(ATOS), Federico Sismondi (MAND), Jorge Bernal,
Alejandro Molina (UMU), Rafael Marín Pérez
(ODINS), Piotr Sobonsky (UTRC), Diego Rivera
(MONT), Miloud Bagaa (AALTO)

EC Project Officer Carmen Ifrim
carmen.ifrim@ec.europa.eu

Project Coordinator Softeco Sismat SpA
Stefano Bianchi
Via De Marini 1, 16149 Genova ς Italy
+39 0106026368
stefano.bianchi@softeco.it

Project website www.ANASTACIA-h2020.eu

mailto:carmen.ifrim@ec.europa.eu
mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/
http://www.anastacia-h2020.eu/

Page 1 of 74

Table of contents

PUBLIC SUMMARY ... 5

1 Introduction ... 6

1.1 Aims of the document ... 6

1.2 Applicable and reference documents ... 6

1.3 Revision History ... 6

1.4 Acronyms and Definitions ... 7

2 Platform Integration Overview .. 9

2.1 ANASTACIA Integrated Framework Architecture .. 9

 The Envisioned Platform .. 9

 Integration Points .. 9

2.2 Detailed Description of the Interfaces .. 14

 Interfaces for Policy Set-up Activity .. 14

 Interfaces for Policy Orchestration and Enforcement ... 20

 Interfaces for Monitoring .. 23

 Interfaces for Reaction Activity ... 25

 Interfaces for Seal Creation ... 31

2.3 Technical Integration Mechanisms And Process ... 32

 Using Docker for Integration ... 32

 Integration at Interface Level .. 32

 Code Level Integration - Working on the same components .. 34

3 Platform Implementation and Integration Planning ... 37

4 Platform Deployment .. 41

4.1 Deployed Components Overview .. 42

 Security Orchestrator & Supporting components ... 42

 Data Filtering and pre-processing Component / Kafka Broker ... 44

 Policy Editor Tool & Supporting components ... 45

 Incident Detector UI .. 46

 VDSS UI .. 47

 Security Alert Service ... 49

 Security and Privacy Seal ... 50

 Logging Service UI .. 51

 Data Analysis Dockerfile used for component wrapping .. 52

4.2 Deployment Automation with MAESTRO .. 55

5 Platform Testing and Validation .. 58

Page 2 of 74

5.1 Source Code Quality Control ... 58

5.2 ANASTACIA framework Scalability Aspects ... 63

5.3 Testing for the Integrated Platform... 65

 Integration Tests .. 65

6 Conclusions .. 73

References ... 74

Index of figures
Figure 1. ANASTACIA architecture ς Interface View- initial version ... 10

Figure 2. ANASTACIA final architecture design ... 11

Figure 3. ANASTACIA final architecture ς Interface View ... 12

Figure 4. Swagger usage in ANASTACIA System Model... 33

Figure 5. Swagger usage in ANASTACIA System Model... 33

Figure 6. ANASTACIA project group in GitLab (1/2) .. 35

Figure 7. ANASTACIA project group in GitLab (2/2) .. 36

Figure 8. Security Orchestrator Instantiates OVS-FW on OSM ... 42

Figure 9. OVS-FW instance on OpenStack with management and floating IPs and IPV6 interfaces 43

Figure 10. OVS-FW on ONOS GUI .. 43

Figure 11. System model swagger documentation .. 44

Figure 12. Topics view in Kafka broker .. 45

Figure 13. Example of Policy Editor Tool screenshot ... 45

Figure 14. Example of Policy Editor Tool screenshot ... 46

Figure 15. Events panel at the Incident Detector GUI ... 46

Figure 16. Alerts panel at the Incident Detector GUI .. 47

Figure 17. Example ATOS VDSS UI screenshot showing Alarms and their mitigation status 47

Figure 18. View of the mitigation strategies used by the VDSS at a given moment 48

Figure 19. Mitigation Targets configuration screen at the VDSS .. 48

Figure 20. Screen for configuring Mitigation Actions properties at the VDSS .. 49

Figure 21. Example of security alert service component screenshot.. 50

Figure 22. Example of Security and Privacy Seal with Seal status details ... 50

Figure 23. Seal degradation evolution ... 51

Figure 24. Example of CNR logging service UI used in ANASTACIA framework testing (Activity). 51

Figure 25. Example of CNR logging service UI used in ANASTACIA framework testing (History). 52

Figure 26. The docker file used for UTRC componentsDeployment Status Model ... 53

Figure 27. Consul Server UI used for the monitoring of the applications ... 54

Page 3 of 74

Figure 28. A snapshot of ANASTACIA component defined in MAESTRO .. 55

Figure 29. Creating ANASTACIA application using MAESTRO ... 56

Figure 30. Deployment of ANASTACIA application using MAESTRO ... 57

Figure 31. Setup of Jenkins & SonarQube pipeline ... 59

Figure 32. Configuring SonarQube on the Jenkins pipeline .. 59

Figure 33. Setup of Jenkins & SonarQube pipeline for Maven project ... 60

Figure 34. Configuring Jenkins &SonarQube for Python ... 61

Figure 35. SonarQube Metrics ... 62

Index of tables
Table 1. Policy Editor Tool <-> Interpreter H2M (H2MI) ... 14

Table 2. Security Orchestrator <-> Interpreter M2L (M2LI) .. 15

Table 3. Policy Interpreter <-> Conflict detector (MDCTI) .. 16

Table 4. Policy Interpreter <-> Policy Repository (PRI) .. 17

Table 5. Policy Interpreter<-> Security Orchestrator .. 18

Table 6. Policy Interpreter <-> Security Enabler Provider (SEPI) ... 19

Table 7. Security Orchestrator <-> SDN controllers (SDNI) ... 20

Table 8. Security Orchestrator <-> NFV MANO modules (NFVI) ... 21

Table 9. Security Orchestrator <-> IoT controllers (IOTI) .. 22

Table 10. Monitoring Agents <-> Monitoring Module (MDR) ... 23

Table 11. Resource and QoS Monitoring Module <-> Security Orchestrator (RQI) .. 24

Table 12. Monitoring -> Reaction definition (MVI) ... 25

Table 13. Reaction -> User/System Administrator definition (SAWI) ... 26

Table 14. Verdict and Decision Support System -> Mitigation Action Service (V2MI) 26

Table 15. Reaction -> Orchestrator definition (CSI) .. 28

Table 16. Verdict and Decision Support System (VDSS)<-> System Models Service (SMI) 28

Table 17. VDSS -> Assets Model (AMI) .. 29

Table 18. Reaction -> Seal Manager definition (SMMI) .. 31

Table 19. ANASTACIA integration mechanisms ... 32

¢ŀōƭŜ нлΦ !b!{¢!/L! ŎƻƳǇƻƴŜƴǘǎΩ ǎǘŀǘǳǎ ŦƻǊ Ŧƛƴŀƭ ǊŜƭŜŀǎŜ όaосύ ... 37

¢ŀōƭŜ нмΦ !b!{¢!/L! ŎƻƳǇƻƴŜƴǘǎΩ ǊŜǉǳƛǊŜƳŜƴǘǎ όaосύ ... 41

Table 22. ANASTACIA deployment status for final demonstrator .. 53

Table 23. Source Code Quality main values overall current status ... 62

Table 24. Technical information per component .. 63

Table 25. Integration Test for SDN, NFV, the IoT controllers .. 66

Table 26. Integration Test for IoT data retrieval ... 66

Page 4 of 74

Table 27. Test for Data Analysis integration .. 67

Table 28. Testing if VDSS receives Data Analysis alerts ... 67

Table 29. Testing proper triggering of reactions ... 68

Table 30. Testing of alert visualization .. 69

Table 31. Testing of MMT monitoring data full circle ... 69

Table 32. Testing events receiving by the DSPS .. 69

Table 33. Testing Policy Editor Tool ... 70

Table 34. Testing policy refinement .. 70

Table 35. Testing policy translation ... 71

Page 5 of 74

PUBLIC SUMMARY
This deliverable is the final reporting for the outcomes of task T.6.1. In the first reporting document,
ANASTACIA Deliverable D6.1[1] , we provided the integration and technical testing plan of the ANASTACIA
framework, along with the suggested development cycle and the tools that can be used to support both the
collaborative development. The integration plan has been created using ANASTACIA Deliverable D1.3[2]
(delivered at M9) as starting point and, by identifying and specifying the necessary integration points
between components, also by constructing the integration approach that will be followed. As architecture
has changed a lot since then, there has been a continuous sync with the advancements of task T1.3 and that
results to be reported in D1.5 (at M36) were considered in this document.

This deliverable extends and updates D6.1 with the results about integration, deployment and validation.

Page 6 of 74

1 INTRODUCTION

1.1 AIMS OF THE DOCUMENT

In this document we provided the output of the final efforts of executing the integration, testing and technical
evaluation plan of ANASTACIA framework. For the creation of the integration plan technical partners
collaborated in many different occasions, especially for the definition of the necessary integration points
between components, but also for a common approach regarding testing and evaluation. The starting point
for the integration plan was ANASTACIA Deliverable D1.3[2] and the work done in task T1.3: Architectural
Design, continued with the specification and development of the mechanisms described in WP2, WP3, WP4
and WP5. Then, in WP6 we defined the integration plan of the discrete mechanisms and software
components, with the agreement on identified interfaces, the usage of selected tools, and the setup of a
development lifecycle scheme that includes source code management, continuous integration, source-code
quality control, release management and ticketing. As this effort was presented in D6.1[1] in this document
we provide mostly the results, but we also provide all the updates on the integration interfaces, deployment
and integration testing of the ANASTACIA framework.

1.2 APPLICABLE AND REFERENCE DOCUMENTS

This document refers to the following documents:

¶ Grant Agreement N°731558 ς Annex I (Part A) ς Description of Action[3]

¶ D1.2 ς User-centred Requirement Initial Analysis[4]

¶ D1.3 - Initial Architectural Design[2]

¶ D2.8 - Secure Software Development Guidelines Final Report[9]

¶ D1.4 - Final User-centred Requirements Analysis[5]

¶ D6.1 - Initial Technical integration and validation Report[1]

1.3 REVISION HISTORY

Version Date Author Description

0.1 14.08.2019 Giannis Ledakis
(UBI)

Skeleton of expected contents

0.2 5.09.2018 Giannis Ledakis
(UBI)

Draft content in sections 2, 3 and 5

0.3 22.09.2018 Giannis Ledakis
(UBI)

Updates section 2

0.4 5.10.2018 Giannis Ledakis
(UBI), ALL

Integration tests section 5.3, first draft

0.5 16.10.2018 Giannis Ledakis
(UBI), ALL

Section 3 and Section 4 content integrated

0.6 29.10.2018 Giannis Ledakis
(UBI), ALL

Section 5 added missing content

Page 7 of 74

Version Date Author Description

0.7 07.11.2019 Giannis Ledakis
(UBI), ALL

Updating integration tests section 5.3 based on input
from all partners, after meeting@Cork

0.8 26.11.2019 Federico (MI) Updated DSPS interface information

0.9 27.11.2019 Miloud Bagaa
(Aalto)

Draft content in sections 2, 3 and 4.

0.9.3 28.11.2019 Ruben Trapero
(ATOS)

Updating section 2.1 and first review by ATOS

0.9.5 10.12.2019 Giannis Ledakis
(UBI), ALL

Deliverable Finalized; Updating based on first review
commentsΣ ǳǇŘŀǘŜŘ ŎƻƳǇƻƴŜƴǘΩǎ ƛƴŦƻǊƳŀǘƛƻƴ,
updated section 4.1

1.0 11.12.2019 Stefano Bianchi Final proofreading

1.4 ACRONYMS AND DEFINITIONS

Acronym Meaning

API Application Programming Interface

CISO Chief Information Security Officer

DSPS Dynamic Security and Privacy Seal

HSPL High Security Policy Language

IoT Internet of Things

MANO Management and Orchestration

MAS Mitigation Action Service

MMT Montimage Monitoring Tool

MSPL Medium Security Policy Language

NFV Network Function Virtualization

OS Operating System

REST REpresentational State Transfer

RPC Remote Procedure Call

Page 8 of 74

Acronym Meaning

SAS Security Alert Service

SDN Software Defined Networking

SIEM Security Information and Event Management

UI User Interface

VDSS Verdict and Decision Support System

VM Virtual Machine

Page 9 of 74

2 PLATFORM INTEGRATION OVERVIEW
A modern software system like ANASTACIA is a combination of different subsystems cooperating so that the
overall framework is able to deliver the needed functionalities. These subsystems need to be integrated in
such a way that they can support common business processes and data sharing across whole framework.

As described in D6.1[1] , in ANASTACIA we tried to combine the desired characteristics of the different
approaches and create an integration that is based on both direct communications between components
(Star architecture) and also asynchronous, loosely-coupled integration through message broker usage. This
approach helped us on achieving characteristics of event-driven architecture and enable ANASTACIA for the
proper supporting of production, detection, consumption of, and reaction to events.

2.1 ANASTACIA INTEGRATED FRAMEWORK ARCHITECTURE

 The Envisioned Platform

An important role for the decision regarding the architectural approach followed in ANASTACIA was the
clarification of the platform vision regarding the way that the ANASTACIA as whole will be used. Based on
the analysis of initial requirements and the use cases reported in Deliverable D1.2[4] , in Deliverable D1.3[2]
five main activities to be supported by the platform were identified, with each of them utilizing specific
components. For the integration planning it is important to clarify how each of these components
interconnects to achieve these identified activities that are shortly presented below;

¶ Security policy set-up activity. This is the initial process triggered once a security policy has been defined
by the user. In this process the policy has to be configured in the platform in order to be enforced. The
interpretation of the security policy claims, the configurations required to monitor the security controls
associated to a policy or the definition of thresholds to identify policy violations, are some activities
carried out by this process.

¶ Security policy orchestration activity. Once the policy has been defined, it is necessary to enforce the
controls specified within the policy. To orchestrate the selected IoT/SDN/NFV-based security enablers,
appropriate interactions with the relevant management modules are required.

¶ Security monitoring activity. In this process the monitoring information is extracted from the devices
through monitoring agents and according to the security controls interpreted from the security policy.
In this activity, the monitoring data is filtered and aggregated in order to carry out its analysis and the
detection of anomalies.

¶ Security reaction activity. In this process the detected anomalies are evaluated to design counter
measures in order to mitigate the effects of attacks and potential threats.

¶ Dynamic security and privacy seal creation activity. In this process, relevant information about detected
threats, monitored information is evaluated to create a seal that determine the level of security
guaranteed/offered by an IoT platform.

The aforementioned activities, along with their sub-activities and resulting architecture of the platform are
described with detail to the deliverable D1.3. In this deliverable the updated architecture is also presented
in order to identify and confirm the interfaces and provide technical details about the needed integration
points between the components that will allow the platform integration.

 Integration Points

Figure 1 shows the ANASTACIA architecture which includes the interfaces between modules, as defined in
D6.1, based on the architecture version delivered at M9 in D1.3.

Page 10 of 74

Figure 1. ANASTACIA architecture ς Interface View- initial version

During the development and integration of ANASTACIA framework, updates had been made in the
architecture by adding new components and interfaces or even removing some unneeded interfaces. Figure
2 depicts an updated view of architecture of the ANASTACIA framework, which includes the latest changes.
The final version of the architecture will be provided in ANASTACIA Deliverable D1.5 at the end of the project.
The most important aspects that have evolved since then are summarized as follows:

- Monitoring Plane includes new components (Incident Detector, Resource and QoS monitoring)
- Reaction plane, where the Reaction Module is defined with more details, including components

required by the Verdict and Decision Support System (VDSS) to fetch input from different parts of
the ANASTACIA framework (Assets Model, Mitigations Repository).

- Security Orchestrator, has involved and is now detailed with the components System Model Service,
the Security Orchestrator Optimizer, the Performance Data Analytics, and the additional
components/drivers needed to interact with NFV, SDN and IoT functions.

- Seal Manager, where the components included have been refined (DSPS Agent, Seal Manager and
DSPS Repository now available).

- User plane extended with more User Interfaces that have been decoupled by the backed services
and are now included in this plane (DSPS UI, Alerting and reaction dashboard, Policy Editor UI).

Page 11 of 74

Figure 2. ANASTACIA final architecture design

Figure 3 shows the major interfaces of the platform. The colouring scheme that is used presents with white
the unchanged interfaces, with yellow interfaces that were defined but changed and with green the newly
added interfaces. The most important updates in the interfaces that are added are explained below.

Page 12 of 74

Figure 3. ANASTACIA final architecture ς Interface View

More specifically, the interfaces introduced that were introduced in D1.3 and no or only minor updates were
introduced are the following:

¶ MSPL Reception Interface (MRI): This interface is used by the policy interpreter to send the MSPL to the
Security Orchestrator.

¶ Security Enabler Provider Plugin Interface (SEPPI): Interface exposed by the Security Enablers Provider.
It is used to get an appropriate enabler plugin during the lower policy refinement done at the Policy
Interpreter, as well as providing the list of available security enablers.

¶ Monitoring Data Receiver (MDR): The interfaces that are used to allow the Monitoring Agents to provide
their output to the Monitoring module. Actually, different Kafka topics are used for different monitoring
agents.

¶ Security Enforcement Plane Interface for IoT, SDN and NFV (IOTI, SDNI, NFVI): Set Interface between
the IoT, SDN, NFV Drivers and the Control and Management Domain. This is a mostly a representation
change as these interfaces are just updated in the sense that the connection the controllers is made
through specific drivers.

o IoT-oriented Security Enforcement Plane Interface (IOTI): This interface is used from the
security orchestrator in order to configure the IoT controller.

o SDN-oriented Security Enforcement Plane Interface (SDNI): Interfaces between the Security
Orchestrator and the SDN controllers. It provides the connectivity required among the Network
Virtual Functions, and some basic security reactions.

Page 13 of 74

o NFV-oriented Security Enforcement Plane Interface (NFVI): This interface allows managing the
security VNFs via the ETSI-oriented NFV MANO modules. The Security Orchestrator can request
the enforcement of the security VNFs according to the configurations generated by the policy
refinement process.

Some of the interfaces were updated based on the architectural updates and were more precisely defined:

¶ High to Medium interface (H2MI): Interface between the User Plane and the Orchestration Plane used
for translating and refine policies. H2MI provide information at a high level of granularity. This interface
is also used internally by the Security Orchestrator to get details about the capabilities that needs to be
enforced within the IoT platform.

¶ Medium to Lower interface (M2LI): Interface between the User Plane and the Orchestration Plane used
for translating and refine policies. M2LI provides a lower level of granularity than the information
provided by H2MI. This interface is also used internally by the Security Orchestrator to get details about
the capabilities that needs to be enforced within the IoT platform.

¶ Seal Manager Metadata Interface (SMMI): The interface provides the requested information to evaluate
the security and the privacy in a real-time fashion. The security and privacy policies defined by the user
are stored inside the policies repository and an interface is available to retrieve and set them from the
seal manager. Based on the latest architecture this interface is now between the Security Alert Service
(SAS) and the DPSS Agent of the Dynamic Security and Privacy Seal.

¶ Security Alerts and Warnings Interface (SAWI): Interface between the Reaction module and the user
plane which is used for the notification to the User/System admin about relevant information regarding
alarms, countermeasures, etc.

¶ Monitoring Verdicts Interface (MVI): Interface between the Monitoring module and the Reaction
module used for exchanging information about detected incidents.

¶ Also, the Countermeasures Suggestions Interface (CSI) has been renamed to Mitigations Enforcement
Interface (acronym remained CSI): Interface between the Reaction module (Mitigation Action Service
(MAS)) and the Security Orchestrator to exchange information about the countermeasures to be
enforced in the IoT platform in order to react to certain incident.

The newly added interfaces are the following:

¶ System Model Interface (SMI): Interface of the System Model of the Security Orchestrator that is used
by the Reaction Module (MAS and VDSS)

¶ Resources and QoS Interface (RQI): Interface between the Resource and QoS Monitoring -> Security
Orchestrator Engine

¶ Resource Monitoring Interface (RPI): Interface between the IoT infrastructure and the Resource and QoS
Monitoring

¶ Mitigation Recommendations Interface(V2MI): Interface between the VDSS and MAS that sends
verdicts and recommendations for the mitigations to be performed

¶ Asset Model Interface (AMI): Interface between the Security Orchestrator and the Assets Model

Finally, the interfaces of configuring the motoring (MCI and RCI) were not used and therefore been
deprecated in this last version of the architecture.

In the following section, the detailed technical description of all the identified interfaces is presented based
on bilateral and general discussions between the technical partners.

Page 14 of 74

2.2 DETAILED DESCRIPTION OF THE INTERFACES

This section gathers information about the interfaces required for the implementation of the integrated
solution of ANASTACIA by defining the communication between the components created in WP2-3-4-5.

The following subsections describe these interfaces (organized per activity) by detailing the following
information:

¶ Description: describes the purpose of the interface

¶ Component providing the interface: describes the component that is offering the described interface.

¶ Consumer components: describes the components that are using the described interface.

¶ Type of interface: REST, XML-RPC, GUI, Java API etc.

¶ Input data: describes how data that is required by the described interface (e.g.: Methods or Endpoints,
values and parameters of the interface)

¶ Output data: describes the data that is returned by the described interface (e.g.: the returned data of
methods or REST call)

¶ Constraints: Any security or authentication related topics regarding this interface, specifically the need
to use a secure transfer protocol. Also, any other constraints (e.g. specific prerequisites, data-types,
encoding, transfer rates) which apply to the interface.

¶ State: Synchronous/Asynchronous, Stream

¶ Responsibilities: Partner that is responsible for the implementation and usage of the interface

In D6.1 we provided a first version of the identified interfaces while in this deliverable we describe the
updated and final versions of the interfaces as they have been actually implemented.

 Interfaces for Policy Set-up Activity

The following tables describe the interfaces involved in the set-up of a new policy, comprising the
interpretation of a security policy set-up at the editor, involving the interfaces H2MI (Table 1), M2LI (Table
2), MDCTI (Table 3), RPI(Table 4), MRI (Table 5) and SEPI (Table 6). These tables extend and update the
information gathered in D1.3 and D6.1.

2.2.1.1 High to Medium Interface
Table 1. Policy Editor Tool <-> Interpreter H2M (H2MI)

High to Medium interface (H2MI)

Description The interface allows requesting a policy refinement from a High-level Security Policy
(HSPL) to a Medium level Security Policy (MSPL), as well as to request a policy
enforcement from a HSPL (avoiding to manually request M2L and MRI interfaces).

Component
providing the
interface

Policy Interpreter

Consumer
components

Policy Editor Tool

Page 15 of 74

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method
Return Values of the
method

h2mservice

h2eservice

HSPL-OP codified in XML
which contains different
kind of HSPL policies.

MSPL-OP codified in XML
which contains the policy
refinements, including
dependencies as well as a
list of security enablers
candidates for the policies
enforcement.

Constraints The values provided in the HSPL policies must be stored in the system model in order
to perform the policy refinement successfully. This interface requires the Security
Enabler Provider in order to get the security enablers candidates.

Responsibilities

o UMU

2.2.1.2 Medium to Lower Interface

Table 2. Security Orchestrator <-> Interpreter M2L (M2LI)

Medium to Lower interface (M2LI)

Description The interface allows to request a policy translation from Medium Level Security Policy
Language Orchestration Policies (MSPL-OP) to specific security enablers
configurations/tasks

Component
providing the
interface

Policy Interpreter

Consumer
components

Security Orchestrator

Type of Interface REST

State Synchronous

Page 16 of 74

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

m2lservice

MSPL-OP codified in XML
which contains different
kind of MSPL policies with
the selected security
enabler for each one of
them, as well as intra
orchestration policy
dependencies.

JSON with a mapping
which includes the MSPL,
the security enabler, the
translation and two lists
with the detected MSPL
conflicts and MSPL
dependencies.

Constraints M2LI uses the system model and the Security Enablers provider interface in order to
obtain the enabler plugin and perform the M2L translation. The interface also uses
the conflict detector interface in order to perform the conflicts and dependencies
detection.

Responsibilities

o UMU

2.2.1.3 Conflict and dependencies detection Interface

Table 3. Policy Interpreter <-> Conflict detector (MDCTI)

Conflict and dependencies detection interface (MCDTI)

Description The interface allows to request MSPL-OP conflicts and dependencies detection.

Component
providing the
interface

Conflict Detector

Consumer
components

Policy Interpreter / Security Orchestrator

Type of Interface REST

State Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

mcdtservice
MSPL-OP codified in XML
which contains different
kind of MSPL policies.

JSON with two different
lists for conflicts and
dependencies.

Page 17 of 74

Constraints This interface requires the system model as well as the policy repository in order to
perform the conflict and dependencies detection taking into account the current
status of the system.

Responsibilities

o UMU

2.2.1.4 Policy Repository Interface

Table 4. Policy Interpreter <-> Policy Repository (PRI)

Policy Repository Interface (PRI)

Description The interface allows to store and retrieve security policy instances, templates and
their status at different levels.

Component
providing the
interface

Policy Repository

Consumer
components

Policy Interpreter / Security Orchestrator / Mitigation Action Service

Type of Interface REST

State Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

capabilities
None JSON with the current

ANASTACIA supported
capabilities

hspl-instances
String for filtering the
results

JSON with the HSPL-
OP/HSPL instances created
as part of a refinement

mspl-instances

String for filtering the
results

JSON with the MSPL-
OP/MSPL instances
created as part of a
refinement/translation

Lowlevel-instances

String for filtering the
results

JSON with the low-level
configuration instances
created as part of a
translation

Page 18 of 74

policy-refinements (GET &
SET)

String for filtering the
results

JSON with the
correspondence between
HSPL-OP and MSPL-OP

JSON with the requested
correspondence of HSPL-
OP/MSPL-OP

policy-translations (GET &
SET)

String for filtering the
results

JSON with the
correspondence between
MSPL-OP and low-level
configurations

JSON with the requested
correspondence of MSPL-
OP/Low-level
configurations

Policy-enforcement (GET
& SET)

String for filtering the
results

JSON with the
correspondence between
MSPL ID and the status

JSON with the current
status of the MSPL.

Constraints This interface requires the policy repository database.

Responsibilities

o UMU

2.2.1.5 MPSL Reception Interface

Table 5. Policy Interpreter<-> Security Orchestrator

MSPL Reception Interface (MRI)

Description Interface used by the policy interpreter to receive the MSPL Orchestration Policies
(MSPL-OP) from the Security Orchestrator.

Component
providing the
interface

Security Orchestrator

Consumer
components

Policy Interpreter

Type of Interface REST

State Synchronous

Page 19 of 74

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Load_MSPL MSPL-OP codified in XML
which contains different
kind of MSPL policies, as
well as intra orchestration
policy dependencies and
the security enablers
candidates

The same MSPL-OP but
each MSPL now contains
only one security enabler
candidate.

Constraints None

Responsibilities

o AALTO
o UMU

2.2.1.6 Security Enabler Provider Interface

Table 6. Policy Interpreter <-> Security Enabler Provider (SEPI)

Security Enabler Provider Interface (SEPI)

Description The interface allows requesting the available plugin catalogue as well as the plugin
files which implements part of the translation process from MSPL to Enabler
configurations.

Component
providing the
interface

Security Enablers Provider

Consumer
components Policy Interpreter

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

getplugins

The required capability

A list of security enablers
which could be able to
enforce the required
capability.

Page 20 of 74

getplugin The Security Enabler
Identifier

The plugin file which
implements the MSPL
translation.

Constraints The plugin as a piece of software must be a python file which implements the method
getConfiguration().

Responsibilities

o UMU (getplugin)
o THALES (getplugins)

 Interfaces for Policy Orchestration and Enforcement

The following interfaces are used for the enforcement of security policies in IoT devices. Three possible ways
of orchestrating or enforcing a policy can be used depending on the interface used:

¶ Policy enforcement using SDN controllers through the SDNI (Table 7).

¶ Policy enforcement using NFV-MANO modules through the NFVI (Table 8).

¶ Policy enforcement using IoT controllers through the IOIT (Table 9).

2.2.2.1 SDN-oriented Security Enforcement Plane Interface

Table 7. Security Orchestrator <-> SDN controllers (SDNI)

SDN-oriented Security Enforcement Plane Interface (SDNI)

Description This interface allows managing the SDN networking configuration via the SDN
controller(s). The Security Orchestrator requests the enforcement of the SDN traffic
flow rules received as outcome of the policy refinement process. This interface is also
used to retrieve the network information from the SDN controllers.

Component
providing the
interface

SDN controller(s) : ONOS

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the
method

Return Values of the
method

Page 21 of 74

Flow_dropping

Flow_mirroring

Flow_forwarding

Flow_bandwidth_limitation

JSON with the list of
parameters required to
manage the flows

JSON with method
execution results

Constraints Regarding ONOS north-bound APIs, authentication based on user and password is
required for issuing commands.

Responsibilities

o AALTO

2.2.2.2 NFV-oriented Security Enforcement Plane Interface

Table 8. Security Orchestrator <-> NFV MANO modules (NFVI)

NFV-oriented Security Enforcement Plane Interface (NFVI)

Description This interface allows to manage the security VNFs via the ETSI-oriented NFV MANO
modules. The Security Orchestrator can request the enforcement of the security
VNFs according to the configurations generated by the policy refinement process.

Component
providing the
interface

NFV MANO (Management and Orchestration) modules: OSM (under evaluation)

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Onboard/export Virtual
Network Function
Descriptor (VNFD)/
Network Service
Descriptor (NSD)

Create/Delete Network
Service (NS)

Data packages defining
NSD/VNFD.

Information about the NS
to manage

 Method execution results

Page 22 of 74

Execute configuration
primitives on Network
Services.

Constraints OSM authentication is based on user and password is required for issuing commands.
Also, HTTPs is enabled. Additional security features can be considered.

Responsibilities

o AALTO
o THALES

2.2.2.3 IoT-oriented Security Enforcement Plane Interface

Table 9. Security Orchestrator <-> IoT controllers (IOTI)

IoT-oriented Security Enforcement Plane Interface (IOTI)

Description This interface allows managing the configuration of IoT nodes via specific IoT
controllers, as well as register new IoT devices. The Security Orchestrator requests
the enforcement of the security controls within the IoT nodes according to the
configurations generated by the policy translation process.

Component
providing the
interface

IoT controllers

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

register

JSON which includes the
information of the new IoT
device.

Registration notifications

resources

JSON with the required
resource request or
modification

IoT resource values/result
of the operation (turn off,
disable radio,
bootstrapping), in plain
text

Page 23 of 74

honeynet None
A honeynet model in order
to build IoT honeynet
policies.

Constraints The system model is required in order to register the IoT devices properly.

Responsibilities

o UMU/OdinS

 Interfaces for Monitoring

The following tables describe the interfaces involved in the Monitoring processes. The collection of
monitoring data is described in the Monitoring Data Receiver (MDR) set of interfaces (Table 10), while
resources monitoring is part of RQI (Table 11) interface.

2.2.3.1 Monitoring Data Receiver

Table 10. Monitoring Agents <-> Monitoring Module (MDR)

Monitoring Data Receiver (MDR)

Description This integration point is needed in order to allow the Monitoring Agents to provide
their output to the Monitoring Module through the Data Filtering Component. It is
not a single interface but a collection of Kafka topics1 used for the collection of the
data from a diverse set of monitoring agents.

Component
providing the
interface

Kafka Message Broker

Consumer
components

Data Filtering Component (Monitoring Service)

Type of Interface
Type of Kafka Topic depends of the Monitoring Agent

State
Asynchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

One topic per each
monitoring agent

¶ AAA events -
IoTBroker

Parameters agreed per
agent, in json format

N/A

1 https://kafka.apache.org/documentation/

Page 24 of 74

¶ Deep Packet
Inspection
scanning ς
security.report

¶ Data Analysis -
UTRCVerdicts

Constraints Each monitoring agent should be able to connect to the Kafka Broker

Responsibilities

o UBITECH

2.2.3.2 Resources Monitoring and QoS Interface

Table 11. Resource and QoS Monitoring Module <-> Security Orchestrator (RQI)

Resources and QoS Interface (RQI)

Description This interface enables the security orchestrator to real-time monitoring of the
resource utilization of the VNFs that includes the CPU usage percentage, memory
details available, used and total.

Component
providing the
interface

Resource and QoS Monitoring Module

Consumer
components

Security Orchestrator

Type of Interface
REST

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Retrieve_Resources

JSON that includes the
information of the VNF.

JSON with method
execution results

Constraints The VNF is up and running. Also, the security orchestrator should have right access
to the different deployed VNFs.

Responsibilities

o AALTO

Page 25 of 74

 Interfaces for Reaction Activity

The following interfaces are used for exchanging relevant data required for the fulfilment of a security policy
within an IoT platform. This includes:

¶ The notification of detected incidents between the Monitoring and the Reaction modules through the
MVI (Table 12).

¶ The notification of alerts and countermeasures from the Reaction module to the User/System admin
through the SAWI (Table 13).

¶ The list of mitigations capable of mitigating an ongoing incident along with a suitability score through
V2MI (Table 14).

¶ The computed countermeasures to the Security Orchestrator for its enforcement through CSI (Table 15).

¶ The information related with the System Model and the Security Enablers deployed in the network
through SMI (Table 16).

¶ The latest information about mitigation strategies, capabilities and actions through AMI (Table 17).

2.2.4.1 Monitoring Verdicts Interface
Table 12. Monitoring -> Reaction definition (MVI)

Monitoring Verdicts Interface (MVI)

Description This interface provides the required monitoring information from the Monitoring to
the Reaction Module. The transferred data is mainly composed of the verdicts of the
security properties tested on the network.

Component
providing the
interface

Incident Detector (Monitoring Module)

Consumer
components

Verdict and Decision Support System (Reaction Module)

Type of Interface
RabbitMQ queue

State
Asynchronous

Input data /
Output Data

Methods or endpoints of the
interface

Parameters of the
method

Return Values of the
method

RabbitMQBolt, listening to the
eu.anastacia.siem_server_output
queue

JSON including:
alarmID, BacklogID,
AlarmEvent. Alarm
event containing
related to the incident
detected.

None

Constraints None

Page 26 of 74

Responsibilities

o MONT
o ATOS

2.2.4.2 Security Alerts and Warnings Interface

Table 13. Reaction -> User/System Administrator definition (SAWI)

Security Alerts and Warnings Interface (SAWI)

Description This interface transfers the alerts and warnings from the Reaction Module to the end-
user interfaces. It is the main communication channel between the Reaction Module
and the ANASTACIA User Plane.

Component
providing the
interface

Security Alert Service (Reaction Module)

Consumer
components

End-user interface

Input data /
Output Data

Database directly accessed from the user plane interfaces

State
Asynchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

Specific tables on the
database containing the
information

The set of detected
security issues (for
raiseAlert), and the
applied countermeasures
(for informReaction)

None

Constraints None

Responsibilities

o ATOS
o MONT
o CNR
o UTRC

2.2.4.3 Mitigation Recommendations Interface
Table 14. Verdict and Decision Support System -> Mitigation Action Service (V2MI)

Mitigation Recommendations Interface (V2MI)

Page 27 of 74

Description This interface provides a list of mitigation recommendations capable of mitigating an
ongoing incident. For every mitigation a suitability score is also provided. It is used by
the MAS to trigger the mitigation suggested by the VDSS.

Component
providing the
interface

VDSS

Consumer
components

MAS

Type of Interface
RabbitMQ queue

State
Asynchronous

Input data /
Output Data

Methods or endpoints of the
interface

Parameters of the method Return Values of
the method

Exchange queue
άŜȄŎƘŀƴƎŜΦǊŜŎƻƳƳŜƴŘŀǘƛƻƴǎέ
attached to a queue
άǉǳŜǳŜΦǊŜŎƻƳƳŜƴŘŀǘƛƻƴǎΦƳŀǎέ
used by the MAS to consume
messages

JSON, which includes:

- The complete alarm
to mitigate

- Name of the
incident

- List of mitigations,
including:

o Id of the
mitigation

o Suitability
score of the
mitigation

o Whether
the
mitigation
has been
chosen by
the Chief
Information
Security
Officer
(CISO)

None

Constraints None

Responsibilities

o MONT
o ATOS

Page 28 of 74

2.2.4.4 Countermeasures Suggestions Interface

Table 15. Reaction -> Orchestrator definition (CSI)

Mitigations Enforcement Interface (CSI)

Description This interface allows the Mitigation Action Service to send the computed
countermeasures to the Security Orchestrator for its enforcement. The
countermeasures are sent in the MSPL format, using an HTTP interface.

Component
providing the
interface

Security Orchestrator

Consumer
components

Mitigation Action Service (Reaction Module)

Type of Interface
 HTTP REST interface

State
Asynchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

HTTP endpoint for sending
the MSPL countermeasure

An MSPL-compliant XML
file that codifies the
computed
countermeasures.

ID

Constraints Following the usage of open standards, this interface uses both the HTTP protocol as
the main wrapper for the countermeasures. In addition, the mitigation actions are
expressed in the MSPL language,

Responsibilities

o AALTO
o MONT

2.2.4.5 System Model Interface

Table 16. Verdict and Decision Support System (VDSS)<-> System Models Service (SMI)

System Models Interface (SMI)

Description This interface provides the ANASTACIA components with the information related
with the System Model and the Security Enablers deployed in the network. This
information includes the description of the devices deployed, their endpoints, among
others.

Page 29 of 74

Component
providing the
interface

Security Orchestrator

Consumer
components

Mitigation Action Service (Reaction Module)

Assets Model (Reaction Module)

Verdicts and Decision Support System (Reaction Module)

Policy Interpreter

Policy Conflict Detector

IoT Controller (IoT Register)

Type of Interface
HTTP Interface (Swagger-based)

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values of the
method

HTTP GET/POST/DELETE
for retrieving or updating
the information.

JSON-based object that
could specify different
needed parameters.

A JSON-based object with
the requested
information.

Constraints None

Responsibilities

o AALTO

2.2.4.6 Asset Model Interface

Table 17. VDSS -> Assets Model (AMI)

Asset Model Interface (AMI)

Description Asset Model component is responsible for storing and sharing latest information about
mitigation strategies, capabilities and actions. This interface is used by components to
access this information.

Component
providing the
interface

Assets Model

Consumer
components

Verdict and Decision Support System

Page 30 of 74

Type of
Interface

REST API

State
State is persevered at Assets Model level. This helps ANASTACIA framework keep latest
information about strategies, capabilities and actions available in the framework.

Input data /
Output Data

Methods or endpoints

of the interface

Parameters of the
method

Return Values of the
method

<host_ip:port>/strategies/ [GET] None List of all strategies stored
by AM component

<host_ip:port>/strategies/<int:id>

[GET, PUT]

Strategy ID or new
strategy

One strategy with unique
ID (GET) or adds new
strategy (PUT)

<host_ip:port>/strategies?available

=<int:availability> [GET]

Availability flag List of strategies with flag
enabled (1) or disabled (0)

<host_ip:port>/strategies/threat

/<int:id> [GET]

Threat identifier List of strategies with
given threat ID or

<host_ip:port>/strategies/threat/

<int:id>?available=<int:availability>
[GET]

Threat identifier and
availability flag

List of strategies with
availability flag enabled
(1) or disabled (0)

<host_ip:port>/capabilities/

 [GET]

None List of all capabilities

<host_ip:port>/capabilities

/<int:id> [GET, PUT]

Capability identifier One capability with
unique ID (GET) or adds
new capability (PUT)

<host_ip:port>/capabilities?

available=<int:availability> [GET]

Capability identifier
and availability flag

List of capabilities with
availability flag enabled
(1) or disabled (0)

<host_ip:port>/actions/ [GET] None List of all actions

<host_ip:port>/actions/<int:id>
[GET]

Action identifier One action with unique ID

Constraints N/A

Responsibilities

o THALES with UTRC support

Page 31 of 74

 Interfaces for Seal Creation

2.2.5.1 Seal Manager Metadata Interface

The following interface SMMI (Table 18) is used for the exchange of the relevant data that the seal manager
needs in order to create the Dynamic Security and Privacy Seal.

Table 18. Reaction -> Seal Manager definition (SMMI)

Seal Manager Metadata Interface (SMMI)

Description The interface is used to provide the alerts, mitigation actions and mitigation states to
forge the dynamic security and privacy seal. Security and the privacy in a real-time
fashion.

Component
providing the
interface

Dynamic Security and Privacy Seal

Consumer
components

¶ Security Alert Service

¶ DSPS agent

Type of Interface
REST. Consumes json, following STIX/TAXII standard (Structured Threat Information
Expression and Trusted Automated eXchange of Indicator Information).

State
Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters of the method Return Values
of the method

[POST]

/api/v3/system_status

STIX json object.

It should include threat information, and
may include mitigation information.

e.g.:

{
 "name": "Man in the Middle on IoT data",
 "type": "attack-pattern",
 "id": "attack-pattern--8cc017e2-1df3-4163-ada2-
b33d5faead19",
 "created": "2019-05-20T13:52:34.748Z",
 "modified": "2019-05-20T13:52:34.748Z",
 "spec_version": "2.0",
 "x_dsps_anastacia_alert": {
 "request_id": "12345",
 "status_complete": true,
 "policy": null,
 "AlarmEvent": {
 "PRIORITY": 5,
 "RELIABILITY": 10,
 "ORGANIZATION": "ATOS",
 "SID_NAME": "Man in the Middle on IoT data 2",
 "USERDATA2": "Probing attack",
 "RISK": 10,
 "CATEGORY": "Attack",
 "SUBCATEGORY": "compromise"
 }
 }
}

None

Constraints N/A

Page 32 of 74

Responsibilities

o MAND
o CNR

2.3 TECHNICAL INTEGRATION MECHANISMS AND PROCESS

For the technical integration in ANASTACIA we need many different components to be deployed and
communicate using dedicated interfaces or through message broker usage. In the following table, we provide
an overview of the mechanisms selected by the consortium to help the integration process. The reader can
find more detailed information about the mechanisms in deliverable D6.1[1] .

Table 19. ANASTACIA integration mechanisms

Multiple Facets Integration

At Deployment Level Using Docker whenever possible and configure
ŎƻƳǇƻƴŜƴǘǎΩ ŘŜǇƭƻȅƳŜƴǘ ǳǎƛƴƎ ENV variables and
Docker compose

Dedicated container registries using Gitlab

At Interfaces Level Documentation of Interfaces using Swagger

At Code Level Dedicated code repositories using Gitlab

At Knowledge Level Dedicated folder for collaboration on the shared
repository of consortium

 Using Docker for Integration

Although providing components as Docker images and collection of components as Docker compose files
was not a hard requirement it was a practice that was followed at the extend this was possible in order to
ease the testing and deployment of ANASTACIA. Dockerizing an application is a very diverse procedure and
multiple approaches can be followed, for this reason dedicated guidelines and examples have been shared
among the technical partners. For hosting the needed docker images2 Gitlab has been used.

 Integration at Interface Level

For the better coordination of the development and integration through the interfaces we suggested the
usage of Swagger3. Also, we have used message queues for providing support for Asynchronous operations.

2.3.2.1 Swagger Usage

At some of the components, especially ones with extended APIs, Swagger has been used in order to ease the
integration and testing. In Figure 4 below a screenshot of the Anastacia System Model component is
provided.

2 registry.gitlab.com/anastacia-project/framework
3 https://swagger.io/

https://swagger.io/

Page 33 of 74

Figure 4. Swagger usage in ANASTACIA System Model

The usage of Swagger allowed having always up-to-date information not only about the available functions
but also about the way that these functions should be called.

 Figure 5. Swagger usage in ANASTACIA System Model

Page 34 of 74

2.3.2.2 Asynchronous Operations

For interfaces that needed asynchronous operation mode for their communication, message brokers have
been used. The publish/subscribe (pub/sub) messaging pattern is realized using destinations known as topics.
Publishers send messages to the topic and subscribers register to receive messages from the topic. Any
messages sent to the topic are automatically delivered to all subscribers. In ANASTACIA we are using Apache
Kafka4 as message broker for the integration of monitoring ŀƎŜƴǘǎΩ feedback, and by other components
needing asynchronous communication, such as the Logging Server. RabbitMQ ǘƘŀǘ ƛǎ ǇŀǊǘ ƻŦ ǘƘŜ !¢h{Ωǎ ±5{{
component has also been used.

 Code Level Integration - Working on the same components

In order to support the cases that multiple partners need to work on the same components, code level
integration was used. Code repositories were used by all partners not only to work together but also to store
ǘƘŜƛǊ ŎƻƳǇƻƴŜƴǘΩǎ ŎƻŘŜ ǎŀŦŜǘȅΦ The source code repositories are available at: https://gitlab.com/ANASTACIA-
project. For the actual components of the platform 22 different repositories were created. One additional
repo/project was created for hosting common files for the Anastacia framework creation; 8 additional
repositories have been also added for storing and sharing additional tools, attacker emulators etc.

4 https://kafka.apache.org/

https://gitlab.com/anastacia-project
https://gitlab.com/anastacia-project

Page 35 of 74

Figure 6. ANASTACIA project group in GitLab (1/2)

Page 36 of 74

Figure 7. ANASTACIA project group in GitLab (2/2)

Page 37 of 74

3 PLATFORM IMPLEMENTATION AND INTEGRATION PLANNING
In ANASTACIA have been performing two cycles of technical and user evaluations during the project period,
while the development of the platform and its evaluation was be performed in parallel. The final version of
ANASTACIA Framework will be delivered at the end of the project, ŀǎ ǇŀǊǘ ƻŦ ƳƛƭŜǎǘƻƴŜ άa{о2 - Second
ƛǘŜǊŀǘƛǾŜ ŎȅŎƭŜ ƻŦ ŘŜǾŜƭƻǇƳŜƴǘ ŎƻƳǇƭŜǘŜŘ ŀƴŘ ǾŀƭƛŘŀǘŜŘέΦ This version is the fully integrated framework that
has undergone technical validation, and in Table 20 we provide the actual status of the components towards
this final release. As seen all components have been finalized; minor changes are only performed based on
the final setup and tests on the demonstration environment for the final review demo.

Table 20. ANASTACIA ŎƻƳǇƻƴŜƴǘǎΩ ǎǘŀǘǳǎ ŦƻǊ Ŧƛƴŀƭ ǊŜƭŜŀǎŜ (M36)

Component Responsible

Partner

(subcomponent)

Status for Final Release

Policy Editor Tool UMU Final implementation covering the main identified use

cases, allowing to model HSPL-OP policies through the

GUI as well as request their translation and

enforcement.

Interpreter UMU Final implementation comprising the H2M refinement

and M2L translation processes for the main identified

use cases.

Policy Conflict Detector UMU Final implementation comprising the MSPL-OP conflict

and dependencies detection for the main identified use

cases.

Policy Repository UMU Final implementation comprising the storage of HSPL-

OP, MSPL-OP and Low level configuration instances as

well as their status.

Security Enablers Provider UMU Final implementation comprising the plugins catalogue

as well as the plugin files.

Security Enablers Plugins OdinS (DTLS

proxy)

Final integration of DTLS proxy to enable the dynamic

deployment by NVF orchestrator.

OdinS (AAA

Architecture)

Final integration of all AAA security mechanisms to

enable the dynamic deployment by NVF orchestrator.

OdinS (Network

Authenticator)

Final integration of Network Authenticator to enable

the dynamic deployment by NVF orchestrator.

UMU (IPTABLES) Final development of filtering capabilities using the

IPTABLES enabler in order to cope with the main

identified use cases.

Page 38 of 74

UMU (IoT

Controller)

Final implementation of power management,

bootstrapping and IoT honeynet capabilities, as well as

IoT devices registration.

UMU (SDN

ONOS NB & SDN

ODL NB)

Final implementation of required networking

capabilities by the use cases.

UMU (Cooja) Final implementation of IoT honeynet translation and

deployment as VNF, from different IoT architecture

topologies.

UBITECH (Kippo) Final implementation of the ssh honeynet enabler.

Security orchestrator

Engine

AALTO Final implementation of the Security Orchestrator as a

virtual instance covering the defined use cases.

Security Orchestrator

Optimizer

AALTO Final development of optimization Algorithm that gives

the possibility to ensure an efficient life cycle

management of different VNFs.

IoT Controllers and Drivers OdinS / UMU Final development and integration with the

Orchestrator component for enabling all security

actuations over IoT network.

Final implementation and integration of the IoT

controller northbound/southbound endpoints in order

to cope with the main identified use cases.

NVF Orchestrators and

Drivers

AALTO Final version of Open Source Mano with the relevant

VNF and NS descriptors and the final version of the

OSM driver.

SDN Controllers and

Drivers

AALTO Final version of the ONOS controller with the relevant

underlying architecture and the final version of the

ONOS driver.

Monitoring Agents OdinS

Final development and integration of all attacks

notifications provided by IoT broker and AAA

architecture when detect malicious behaviours

according to use cases proposed in ANASTACIA project.

MONT Integration of the adapted version of the MMT-Probe

to support all the IoT protocols involved in the

ANASTACIA use cases.

Page 39 of 74

ATOS Implementation of new plugins for the incorporation of

new sources of events, including new virtual security

services and 5G related incidents.

Data Filtering and pre-

processing Component

UBITECH Finalization of appropriate models used for filtering and

pre-processing of data, taking into account 5g related

incidents.

Data Analysis Component UTRC Final implementation of adversary emulator for APT

that generates MiTM attacks in Y3 scenario.

Verdict and Decision

Support System

ATOS Creation of a Decision Support System based on alerts

detected, devices affected and available mitigations to

provide with suitability scores for the available

mitigations, which are used to recommend about

mitigations.

Integration of the VDSS with the Assets Model and with

the System Model of the Orchestrator.

Mitigation Action Service MONT Implementation of the standard language (MSPL) to

communicate the set of computed countermeasures to

the Security Orchestrator. Integration with the other

components of the ANASTACIA platform.

ATOS Integration of the VDSS output with the MAS for

submitting mitigations recommendations.

Security Alert Service ATOS, CNR Incorporation of alerts, configuration of the decision

support service, visualization of reports, interfaces for

the configuration of monitoring, alerting and reaction

components.

ATOS Integration of the VDSS and Incident Detector output

for submitting information about incidents detected

and mitigations recommendations.

Dynamic Security and

Privacy Seal Agent

MAND, DG, AS Dynamic Security and Privacy Seal implementation

completed.

Security and Privacy

Manager Analysis

MAND, DG, AS Implementation completed and integrated with other

components.

Dynamic Security and

Privacy Seal User Interface

MAND, DG, AS GUI of Dynamic Security and Privacy Seal

implementation completed.

System Model Service AALTO Final version of System Model Service that confirms

with open API specification.

Page 40 of 74

Assets Model THALES Component development and integration completed.

Security Resource Planning THALES Component development and integration completed.

Incident Detector ATOS, MONT Incorporation of cross correlated alarms that integrate

different events from different sources for the

generation of more accurate alarms.

Incorporation of support for additional alerts related to

5G incidents.

Incorporation of IoT device related information (such as

location, type of device) to provide with risk

calculations based on the characteristics of the device

affected.

Security Sensors MONT (MMT-

Probe)

Inclusion of the detection algorithms for untrusted

communications and SlowDoS attacks.

Page 41 of 74

4 PLATFORM DEPLOYMENT
The deployment of ANASTACIA as platform is currently executed the premises of UMU where the actual
demonstrator of the project takes place. Prior to this, for development and demonstration purposes a test
installation of the core platform components has been provided where components were hosted in various
locations on the premises of technical partners. In the table below we provide the basic requirements of the
components, in terms of memory, storage, processing needs, and the OS used.

Table 21Φ !b!{¢!/L! ŎƻƳǇƻƴŜƴǘǎΩ ǊŜǉǳƛǊŜƳŜƴǘǎ

Component(s) Memory Storage Processor OS

Policy Editor Tool 1GB 1GB 1vCPU Ubuntu

Policy Interpreter 1GB 1GB 1vCPU Ubuntu

Policy Conflict Detector 1GB 1GB 1vCPU Ubuntu

Policy Repository 1GB 1GB 1vCPU Ubuntu

Security Enablers
Provider

1GB 1GB 1vCPU Ubuntu

Security orchestrator
Engine

2GB 10GB 1vCPU Ubuntu

Security Orchestrator
Optimizer

2GB 10GB 1vCPU Ubuntu

Data Filtering and pre-
processing Component

16Gb 100Gb 4vCPUs Ubuntu

Data Analysis
Component

1Gb 1GB 1vCPU Ubuntu

Verdict and Decision
Support System

2Gb 10Gb 2vCPU Ubuntu

Mitigation Action
Service

2Gb 20Gb 1vCPU Ubuntu

Security Alert Service 2Gb 20Gb 1vCPU Ubuntu

Dynamic Security and
Privacy Seal Agent

4Gb 50Gb 4VCPU Ubuntu

Security and Privacy
Manager Analysis*

4Gb 50Gb 8VPCU Ubuntu

Dynamic Security and
Privacy Seal User
Interface

8GB 50GB 8vCPU Ubuntu

