
 

 
 

ANASTACIA has received funding from the European Union’s  
Horizon 2020 research and innovation programme under Grant Agreement N° 731558  

and from the Swiss State Secretariat for Education, Research and Innovation.  
This document only reflects the ANASTACIA Consortium’s view.  

The European Commission is not responsible for any use that may be made of the information it contains. 

 

 

 

 

 

 

D4.2 
Initial Reaction Component 
Services Implementation Report  

Distribution level CO 

Contractual date 31.10.2018 [M22] 

Delivery date 31.10.2018 [M22] 

WP / Task WP4 / T4.2 

WP Leader MONT 

Authors I. Vaccari (CNR), E. Cambiaso (CNR), E. Punta 
(CNR), S. Scaglione (CNR), D. Rivera (MONT), R. 
Trapero (ATOS), P. Sobonski (UTRC), D. Belabed 
(THALES), A. Molina Zarca (UMU) 

EC Project Officer Carmen Ifrim 
carmen.ifrim@ec.europa.eu  

Project Coordinator Softeco Sismat SpA 
Stefano Bianchi 
Via De Marini 1, 16149 Genova – Italy 
+39 0106026368 
stefano.bianchi@softeco.it  

Project website www.anastacia-h2020.eu  

  

mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/


        

  

Page 1 of 31 
 

Table of contents 

PUBLIC SUMMARY ............................................................................................................................................. 3 

1 Introduction ............................................................................................................................................... 4 

1.1 Aims of the document ...................................................................................................................... 4 

1.2 Applicable and reference documents .............................................................................................. 4 

1.3 Revision History ................................................................................................................................ 4 

1.4 Acronyms and Definitions ................................................................................................................ 5 

2 The ANASTACIA Reaction Component ...................................................................................................... 6 

2.1 Architecture ..................................................................................................................................... 6 

2.2 Implementation ............................................................................................................................... 7 

2.2.1 Security Alert Service ................................................................................................................... 7 

2.2.2 Verdicts and Decision Support Service ........................................................................................ 8 

2.2.3 Mitigation Action Service ........................................................................................................... 14 

2.2.4 Security Model Analysis ............................................................................................................. 19 

2.2.5 Available Capabilities ................................................................................................................. 21 

3 Summary of internal communication ...................................................................................................... 23 

4 Relevant features of the Reaction Module ............................................................................................. 24 

5 Conclusions and Future Work ................................................................................................................. 25 

6 Annex I. Categories and subcategories of security alerts ........................................................................ 26 

 

  



        

  

Page 2 of 31 
 

Table of figures 

 

Figure 1 - ANASTACIA Framework ..................................................................................................................... 6 

Figure 2 - Reaction module................................................................................................................................ 7 

Figure 3 - VDSS relationships ............................................................................................................................. 9 

Figure 4 - Internals of the Verdict and Decision Support Server ....................................................................... 9 

Figure 5 - Details of the VDSS inputs from the Incident Detector ................................................................... 11 

Figure 6 - RabbitMQ configured as fanout (source: https://www.rabbitmq.com) ......................................... 11 

Figure 7 - Deployment of queues to manages I/O with VDSS ......................................................................... 12 

Figure 8 - Exchange queues at the RabbitMQ server ...................................................................................... 12 

Figure 9 - Attached queues seen at the RabbitMQ server .............................................................................. 13 

Figure 10 - Class diagram for Mitigation Action Service.................................................................................. 15 

Figure 11 - Sequence Diagram for init Method ............................................................................................... 16 

Figure 12 - Sequence Diagram for start Method ............................................................................................. 17 

Figure 13 - Sequence Diagram for handleDelivery Method ............................................................................ 18 

Figure 14 - The Security Model Analysis interactions ..................................................................................... 20 

Figure 15 - Interaction between SMA ............................................................................................................. 20 

 



        

  

Page 3 of 31 
 

PUBLIC SUMMARY 

This document is the second deliverable of the WP4 – Monitoring and Alert/Reacting Enablers. It is focused 
on the Reaction Module of ANASTACIA platform. In this deliverable, the functionalities of the Reaction 
Module are described and analysed. The deliverable also describes the actual state of the component of the 
Reaction Module and the internal communications between the components in order to define a set of 
countermeasures to mitigate the threats detected by the Monitoring Module. 

Firstly, the Security Alert Service is analysed. The aim of this component is to retrieve alerts from the Verdicts 
and Decision Support System (VDSS), analyse and enrich them with further information retrieved by the 
Mitigation Action Service (MAS), and send the expanded output to the seal management plane (DSPS). 
Secondly, the Verdicts and Decision Support Service (VDSS) is considered. It is the module that evaluates the 
threats detected by the Monitoring module and decides, upon an analysis of the available security 
capabilities, the possible countermeasures to adopt, among the ones that are supported by the ANASTACA 
framework. Thirdly, the Mitigation Action Service (MAS) is in charge of processing the decisions taken by the 
Verdict and Decision Support System and generate the appropriate MSPL file that specifies the 
countermeasures to be deployed. The MSPL is sent to the Orchestrator Plane to deploy the countermeasures 
selected. Finally, the Security Model Analysis is implemented to store all the capabilities of the platform and 
to share the database with the VDSS. 

Finally, a section describing the innovative scientific and technological aspects is reported, in order to better 
explain the functionalities of the Reaction Module. In this context, the Reaction Module represents a 
particularly innovative component of the system, due to the fact it’s able (i) to make autonomous decisions, 
without human intervention, (ii) to deploy reactions in (almost) real-time, and (iii) to manage large numbers 
of detection events. Because of this, and because of the importance of this component for the ANASTACIA 
architecture, the Reaction Module represents a crucial element of the system, implemented through 
security-by-design approaches and characterized by innovative aspects. 



        

  

Page 4 of 31 
 

1 INTRODUCTION 

1.1 AIMS OF THE DOCUMENT 

This document describes the second deliverable of WP4, which contains detailed information on the 
implementation of the ANASTACIA framework Reaction Module. Section 2 introduces the current status of 
the ANASTACIA framework architecture related to the Monitoring and Reaction plane. Section 2.1 presents 
the general architecture of the ANASTACIA Reaction Module. Section 2.2 describes the module developed by 
explaining in detail each component and the flow of information exchanged. Section 3 and 4 show a summary 
of internal and external communication. Finally, Section 5 presents the conclusions of the document. 

1.2 APPLICABLE AND REFERENCE DOCUMENTS 

This document refers to the following documents: 

• D1.3 – Architecture Design; 

• T2.2 – Attacks and Threats Analysis and Contingency Actions; 

• MS12b – Reaction component services specified and agreed by the board; 

• D4.1 – Initial Reaction Component Services Implementation Report. 

1.3 REVISION HISTORY 
 

Version Date Author Description 

0.1 28/08/2018 I. Vaccari (CNR) Initial draft 

0.2 04/09/2018 E. Punta (CNR)  First revision 

0.3 12/10/2018 I. Vaccari (CNR), 
E. Cambiaso 
(CNR) 

Integration of contributions received from partners 

0.4 15/10/2018 E. Cambiaso 
(CNR), S. 
Scaglione (CNR) 

Minor fixes 

0.5 17/10/2018 Alejandro Molina 
Zarca (UMU) 

Added information related to the available capabilities 
database 

0.6 22/10/2018 Diego Rivera 
(MONT) 

Added information for the innovative aspects 

0.7 25/10/2018 I. Vaccari (CNR), 
E. Cambiaso 
(CNR) 

Production of the final version of the document 

 

  



        

  

Page 5 of 31 
 

 

1.4 ACRONYMS AND DEFINITIONS 

 

Acronym Meaning 

SAS Security Alert Service 

VDSS Verdicts and Decision Support System 

MAS Mitigation Action Service 

DSPS Dynamic Security and Privacy Seal 

SO Security Orchestrator 

 



        

  

Page 6 of 31 
 

2 THE ANASTACIA REACTION COMPONENT 
One of the most interesting aims of ANASTACIA framework is to implement a strategy able to react when 
threats are made to the system. The framework is composed by two different modules. The monitoring 
module, described in D4.1, is developed in order to detect when a threat is attacking the system. 

 

Figure 1 - ANASTACIA Framework 

As can be seen from Figure 1, the Reaction module is directly connected to the Monitoring module, the Seal 
Manager and the Security Orchestrator Plane. In collaboration with the Monitoring module, the aim of the 
Reaction module is to provide the countermeasures that could be adopted by the system in order to mitigate 
the detected attack and to share the defined mitigation plane with the other module of the framework in 
order to protect the system from threats. 

In the next sections, the current status of each component of the Reaction Module is described in detail.  

2.1 ARCHITECTURE 

The first version of the architecture, defined in the deliverable D1.3, was used as a basis for starting the 
design of the individual components and the iterations that the components have internally and externally 
with other modules of the framework. The main idea is to develop a lightweight and reliable module that 
quickly selects the various countermeasures that can be implemented when a threat is identified by the 
Monitoring module to prevent the damage caused to the system to increase dramatically.  

In Figure 2 is reported the actual version of the Reaction Module, after some revision activities adopted to 
refine the architecture. 



        

  

Page 7 of 31 
 

 

Figure 2 - Reaction module 

 In the current version of the architecture, the Reaction Module consists of the following components: 

• Security Alert Service: this component is adopted to retrieve alerts form the VDSS component, 
analyse and enrich them with further information (retrieved by the MAS), and send the expanded 
output to the seal management plane (DSPS); 

• Verdict and Decision Support System: this component is in charge to evaluate threats detected at 
the Monitoring module and decide the most convenient countermeasure among the ones that are 
supported by the platform; 

• Security Model Analysis: This component continuously collects and updates the existing capabilities 
and their related threats and costs from the Security Orchestrator. 

• Available capabilities database: database used to store the capabilities of the ANASTACIA framework 
and to share the information with other component of the Reaction module 

• Mitigation Action service: This component is in charge of analysing the outputs of the Verdict and 
Decision Support System and transform these alerts into a MSPL file that specifies the 
countermeasure that as to be deployed to respond against the detected attack. 

 

2.2 IMPLEMENTATION 

The implementation phase was carried out in several steps, to allow partners to implement and refine the 
logic of the components in an accurate and precise manner. Initially, internal components and interfaces 
were developed to connect the various modules inside the Reaction Module. Subsequently, the Reaction 
module was interfaced with the other modules of the framework to send the processed information.  

The current version of the module is able to process the alert received from the Monitoring Module 
containing information on the identified threat. Subsequently, it recovers from the various modules the 
possible countermeasures to be applied, in terms of policy, and sends this information to the modules 
responsible for applying the countermeasures on the system in order to protect it against attacks. 

The countermeasures currently available on the system are those defined in T2.2 for the use cases under 
analysis. In the next versions they will be updated and expanded to help protect the system from more 
threats. 

2.2.1 Security Alert Service 

The Security Alert Service is a component of the Reaction module used in this initial phase to integrate 
information from the other components of the module, group them together and send to the DSPS.  



        

  

Page 8 of 31 
 

SAS module chains the detailed information related to the threat detected with the policies that the other 
components of the module have selected to protect the system from attacks. Using this module will therefore 
lead to a link between the identified threat and the selected protection system. The module communicates 
with the components as shown in Table 1. 

Abbreviation Alias Component Developing partner Communication  

VDSS XL-SIEM Verdicts and Decision 
Support System 

ATOS Dedicated 
RabbitMQ queue 

MAS - Mitigation Action Service MONTIMAGE Web Server 

DSPS - Dynamic Security and Privacy 
Seal 

DG, MANDAT, 
ARCHIMEDE 

Dedicated 
RabbitMQ queue 

Table 1 - Communication of the Security Alert Service 

In particular, the communication between the SAS and VDSS modules is implemented on a dedicated 
RabbitMQ queue where the SAS component listens to the queue waiting for a threat identified by the 
Monitoring module and transmits it to the VDSS.  

After receiving detailed information from the VDSS about the identified threat, the SAS component waits 
until all other components of the module perform their activities to identify and select the countermeasures 
necessary to mitigate the threat. When the activities are completed, the MAS sends the selected policies 
through a Web Server.  

The SAS then combines the threat information with the policies that the other components of the module 
have selected and sends the combined information externally, via another dedicated RabbitMQ queue, to 
the Dynamic Security and Privacy Seal. In fact, the communication based on the two dedicated RabbitMQ is 
implemented with SSL encryption, whereas instead the Web Server is only an http connection. Next release 
will implement SSL. 

The SAS module then combines the alert received from the VDSS with the policies from the MAS producing 
an output for the DSPS module with the format reported below. 

{ 

    <alert data, as received by the VDSS component>, 

    'status_complete': <a boolean value specifying if the alert is enriched or not with 

the data received by the MAS component>, 

    'policy': <policy data, as received by the MAS component (optional, only if 

status_complete is true)>, 

    'request_id': <deployment identifier, as received by the MAS component (optional, only 

if status_complete is true)> 

} 

 

2.2.2 Verdicts and Decision Support Service 

The Verdicts and Decision Support Service (VDSS) is in charge of evaluating the incident detected at the 
Monitoring module and decide, upon an analysis of the available security capabilities, on the most convenient 
countermeasure among the ones that are supported by the IoT infrastructure. The VDSS is the consumer of 
the Incident Detector at the Monitoring module, which exports the incidents detected to the VDSS. Those 
incidents are evaluated based on the information provided by the Security Model Analysis (SMA). The result 
of the evaluation is distributed to the consumers of such information (namely the Security Alert Service, SAS, 
and the Mitigation Action Service, MAS).  



        

  

Page 9 of 31 
 

 

Figure 3 - VDSS relationships 

The VDSS component is built upon several subcomponents (see figure below).  

 

Figure 4 - Internals of the Verdict and Decision Support Server 

The core of the VDSS is the Risk Assessment Engine. Two main parts supports it:  

• I/O: Infrastructure for exchanging information between the VDSS and other components of the 
ANASTACIA infrastructure. Two sources are used as input for the Risk Assessment Engine: 

o Incidents detected at the monitoring module. The monitoring module correlates monitoring 
events and reports about incidents detected. A Storm-DRPC1 based mechanism is used to 
report these incidents to the Risk Assessment Engine.  

o Information about mitigations and capabilities. The Security Model Analysis (SMA), using 
information retrieved from the Orchestrator, reports to the VDSS about the available 
mitigations that are supported by the IoT infrastructure according to the security policy and 
the capabilities enforced. A RabbitMQ messaging queue is used to share this information 
with the VDSS. Details will be given below. 

The output of the VDSS is consumed by the MAS and the SAS. The MAS will use the VDSS output to 
create a MSPL message to be interpreted by the Orchestration to enforce the Mitigation. The SAS 
adapts the VDSS output to be processed by the Seal Manager module. The output of the VDSS are 

                                                           
1 http://storm.apache.org/releases/1.1.2/Distributed-RPC.html 

Incident 
Detector 

Monitored 
events 

VDSS 

SMA 

SAS 

MAS 

Seal Manager 

Orchestration 

MAS 

SAS 

Im
p

o
rt

in
g 

q
u

eu
e Risk 

Assessment 
Engine 

Importing 
queue 

SMA 

Monitoring 
module 

Ex
p

o
rt

in
g 

q
u

en
e 

VDSS 

I/O 



        

  

Page 10 of 31 
 

alerts about incidents detected and mitigations proposed. The VDSS produces security alerts, which 
include information about the severity of the incident detected. This information is shared through 
a RabbitMQ messaging queue. Details will be given below. 

• Risk Assessment Engine: component in charge of evaluating the incidents detected at the monitoring 
module and the mitigations supported by the orchestrator. The purpose of the Risk Assessment 
Engine is to evaluate the trade-off between mitigating the incident and the cost associated to it. The 
cost is understood here as the resources required to enforce a mitigation, considering resources 
either computational, human, time resources, complexity, time to mitigate, time that the service 
need to be up and running again, and, ultimately, monetary costs. All those factors are evaluated 
using a mathematical model that produces a list of recommended mitigations, including details about 
what are the best ones in terms of cost. It is up to the system admin decision to automatically enforce 
the best possible mitigation or to choose among the list of mitigations, evaluating the scores and 
information produced by the risk assessment engine. 

The I/O has been completely developed during the first period, while the Risk Assessment Engine has 
produced with a very simple functionality that will be improved during the second period. The following 
subsection describes the details of the I/O components of the VDSS. 

Implementation details for I/O queues 

A set of input and output elements were developed to feed the Risk Assessment Engine. The development 
was divided into two parts: 

• Input from the Monitoring module. The VDSS receives information about incidents detected by the 
Monitoring module. The monitoring module and the VDSS are very deeply integrated based on 
Apache Storm clusters. Several storm workers are deployed (which might be running in different 
machines, thus improving scalability, performance and flexibility). The Incident detector, at the 
Monitoring module, deploys several correlation bolts in charge of correlating the events received 
from the agents that are monitoring the security probes available at the IoT infrastructure. These 
events are received by this correlation bolt through a storm spout, which is a source of stream used 
to transfer data in the form of tuples (this is, pairs of values representing a label and value). The 
functionality provided by the correlation bolt can be distributed between different storm workers, 
which might be running in different machines. The result of the correlation is passed as a storm spout, 
by using a storm-drpc server, to another correlation bolt (called actionBolt) in charge of preparing 
the data to be processed by the risk assessment engine. Again, this actionBolt can be processed by 
one or more workers which can be running in different machines, thus sharing computational 
resources. The internals of this are represented in Figure 5. 



        

  

Page 11 of 31 
 

 

Figure 5 - Details of the VDSS inputs from the Incident Detector 

• Input from SMA, Output to MAS. The VDSS uses a different mechanism to communicate with the 
SMA and MAS. The main reason for this is due to the deep integration of the VDSS within the Incident 
detector, which are both integrated in a storm topology that is part of the Atos XL-SIEM asset. The 
VDSS manages the exchange of information between SMA and MAS through secure RabbitMQ 
queues. The VDSS uses a fanout schema for configuring the queues (Figure 6). This means that an 
exchange queue is created (X in the figure), where the messages are put but by the Producer (P). The 
exchange queue allows to be attached to different queues (amq.gen queues in the figure) which are 
created by Customers (Ci). The fanout schema broadcast the messages sent by the Producer to the 
Exchange queue to all the attached queues. The Exchange queue empties when the messages are 
broadcasted while the attached queues retain the messages till they are consumed by the 
consumers. 

 

Figure 6 - RabbitMQ configured as fanout (source: https://www.rabbitmq.com) 

This fanout schema has been used in Anastacia to control de input and output of the VDSS between 
the MAS and the SAS. A RabbitMQ server is running at the VDSS, which used by the, SAS, MAS and 
SMA to manage the exchange of information. Figure 7 represents the queues deployed in the 
Reaction module. Two exchange queues are configured: 

o The exchange queue eu.anastacia_server_output is used to push incident alerts to the 
attached queues: 

Storm spout 
(<event>) 

Monitoring 
agents 

CorrBolt 

dbWriterBolt 

actionBolt 

Incident 
Detector DB 

DRPC server 

RabbitMQ 

MAS SMA SAS 

Incident Detector 

VDSS 

Risk Assessment Engine 

https://www.rabbitmq.com/


        

  

Page 12 of 31 
 

▪ The queue eu.anastacia.dw_input.cnr is used by the SAS to read incident alerts and 
modify them to be sent towards the Seal Manager. 

▪ The queue eu.anastacia.dw_inputmontimage is used by the MAS to read incidents 
and prepare MSPL files to be interpreted by the orchestrator for its enforcement. 

o The exchange queue Anastacia_SecurityModelAnalysis is used by the SMA to push 
mitigations and capabilities supported by the platform. The SMAtoVDSS queue is attached 
to this queue to provide that information as input to the Risk Assessment Engine. 

 

Figure 7 - Deployment of queues to manages I/O with VDSS 

The following screen represents the RabbitMQ management pane, which shows the Exchange queues 
available (Figure 8) and the attached queues (Figure 9). 

 

Figure 8 - Exchange queues at the RabbitMQ server 

actionBolt 

SMA 

eu.anastacia.siem_server_output 

eu.anastacia.dw_input.cnr 

eu.anastacia.dw_inputmontimage 

SMAtoVDSS 

Anastacia_SecurityModelAnalysis 

MAS 

SAS 
VDSS 



        

  

Page 13 of 31 
 

 

Figure 9 - Attached queues seen at the RabbitMQ server 

Incident alerts exported by VDSS 

The VDSS exports security incident alerts to other components of the Reaction module. These alerts are 
exported to the queues specified in the previous subsection. The format of the message exported is very 
similar to the format used for events exported by the Monitoring module (see D4.1 for details). The message 
is a JSON message that includes: 

• Information about the alert, including internal fields used by the VDSS (such as several IDs), and 
information that describe the alert such as the destination and source (IP and Port) of the incident, 
metrics (priority, reliability, risk) to evaluate the severity of the incident, textual descriptions of the 
alert, timestamp, category and subcategory of the alerted incident and several custom fields 
(USERDATA) with specific information about the alert.  

• Embedded events that have been correlated to generate the alert. These embedded events follow 
the same JSON format as the one specified in D4.1 for the events exported by the monitoring module.  

The following is an example of one of the alerts exported by the VDSS. It corresponds to a Forbidden Network 
Authentication which has been generated by correlating one event (identified as “a” inside the 
“RELATED_ELEMENTS_INFO” field). It is worth noticing that every event and alert is identified by the VDSS 
with a log. The alert specifies the events that have been correlated by including a list of event ids inside the 
“RELATED_EVENTS” field. The RELATED_ELEMENTS_INFO contains these events (also identified by their 
event_id field). 

{"AlarmEvent":{ 

 "DST_IP_HOSTNAME":"00000000", 

 "RELATED_EVENTS":"[b69f11e8a9b9080027ea052c27ca689c]", 

 "DST_IP":"aaaa::2", 

 "PLUGIN_NAME":"cyber-monitor", 

 "SRC_IP":"aaaa::1", 

 "PRIORITY":4, 

 "RELIABILITY":6, 

 "SUBCATEGORY":"Bruteforce", 

 "USERDATA3":"", 

 "USERDATA4":"", 

 "PLUGIN_SID":"5", 

 "USERDATA1":"PAA", 

 "USERDATA2":"", 

 "ORGANIZATION":"ATOS", 

 "CATEGORY":"Authentication", 

 "PLUGIN_ID":"70000", 

 "USERNAME":"", 



        

  

Page 14 of 31 
 

 "FILENAME":"", 

 "BACKLOG_ID":"4fb66f54938f4c59be24e175c51b1e55", 

 "RELATED_EVENTS_INFO":{ 

  "a":{ 

   "date":"1536765531", 

   "plugin_id":31000, 

  

 "log":"IlNlcCAxMiAxNToxODo1MSAxOTIuMTY4LjU2LjEgW0FBQV0geyJzb3VyY2VfaXAiOiJhYWFhOjoxIiw

gInNvdXJjZV9wb3J0IjoiNDAwMCIsImFmZmVjdGVkX2lwIjoiYWFhYTo6MiIsImFmZmVjdGVkX3BvcnQiOiI3MTYiLCJ0eX

BlX29mX2RldmljZV9hZmZlY3RlZCI6IlBBQSIsImV2ZW50X3R5cGUiOiJuYSJ9ICI=", 

   "interface":"enp0s3", 

   "dst_ip":"aaaa::2", 

   "src_ip":"aaaa::1", 

   "userdata7":null, 

   "fdate":"2018-09-12 15:18:51", 

   "userdata8":null, 

   "userdata5":null, 

   "userdata6":null, 

   "userdata9":null, 

   "userdata3":null, 

   "userdata4":null, 

   "userdata1":"PAA", 

   "userdata2":null, 

   "src_port":null, 

   "plugin_sid":1, 

   "event_id":"b69f11e8a9b9080027ea052c27ca689c", 

   "filename":null, 

   "organization":"ATOS", 

   "dst_port":716, 

   "tzone":null, 

   "device":"10.0.2.4", 

   "username":null}}, 

 "PROTOCOL":6, 

 "RISK":4, 

 "SRC_PORT":0, 

 "SENSOR":"", 

 "SRC_IP_HOSTNAME":"00000000", 

 "SID_NAME":"AAA Probe - Forbidden Network Authentication", 

 "USERDATA7":"", 

 "DATE":"2018-09-12 15:18:51", 

 "USERDATA8":"", 

 "USERDATA5":"", 

 "USERDATA6":"", 

 "PASSWORD":"", 

 "USERDATA9":"", 

 "DST_PORT":716, 

 "EVENT_ID":"84dd346249904bfc89b1719a21bacb93"}} 

 

The main fields used to trigger a suitable mitigation are the CATEGORY, SUBCATEGORY and SID_NAME. The 
SID_NAME contains the type of security incident detected while the category and subcategory classifies 
them. A list of pre-defined categories is available at the VDSS. Annex I lists them. It is expected that new 
categories and subcategories can be added in order to better fine tune the mitigation. 

2.2.3 Mitigation Action Service 

The Mitigation Action Service (MAS) is the implementation of the principal interface with the Security 
Orchestrator of the ANASTACIA platform. Considering this functionality, the MAS is the Reaction component 
that is in charge of processing the decisions taken by the Verdict and Decision Support System and generate 
the appropriate MSPL file that specifies the countermeasures to be deployed. 

2.2.3.1 Mitigation Action Service Design 

The Mitigation Action Service (MAS) was conceived as an always-running software that actively monitors the 
output of VDSS. It has been implemented in Java, with the support of the JSVC library2, in order to provide 
continuously operating software rather than single execution code. 

The design of the MAS is presented in Figure 10. It presents the principal classes that are used by this module, 
as well as the dependencies between them. 

                                                           
2 https://commons.apache.org/proper/commons-daemon/jsvc.html 



        

  

Page 15 of 31 
 

 

Figure 10 - Class diagram for Mitigation Action Service 

The Principal class is “MitigationActionService”, which is in charge of actively look for messages in the 
RabbitMQ server of the VDSS. This class defines four methods (init, start, stop and destroy, all of them 
required by the JSVC library) that are called accordingly in different stages of the service. In these methods, 
the Class will coordinate the interactions with the rest of the classes in order to correctly read the messages 
from the VDSS, generate the corresponding MSPL and send it to the registered outputs. The interactions at 
each step of the execution are explained in the next section. 

2.2.3.2 Implementation Details 

As it is shown in the class diagram of Figure 10, the MAS is formed by a set of Java classes. The 
MitigaitonActionService class is the principal one, which implements the “Daemon” class of the JSVC library, 
defining four methods that are invoked automatically by the jsvc command. 

2.2.3.2.1 Init 

The “init” method is the starting point of the service. It is automatically invoked by JSVC when starting the 
service. The sequence diagram of the init method is depicted in Figure 11. 



        

  

Page 16 of 31 
 

 

Figure 11 - Sequence Diagram for init Method 

As mentioned before, this method is in charge of initializing the required variables and connections. It starts 
by parsing the arguments, determining which is the input of the MAS and the outputs. Then for each detected 
output, it registers it in the ReactionOutput class. Then, the MitigationActionService class starts configuring 
the input of the server, by obtaining the Connection Manager of the input specified in the arguments and 
obtaining the RabbitMQ supplier (an instance that handles how to connect to the server) for the specified 
input. Finally, the MAS class creates a new Connection object and the respective Channel to start the 
communication. 

At this stage, the Mitigation Action services is still not ready to process messages, since the Rabbit MQ client 
has not been configured yet. This will be done in the “start” method. 

2.2.3.2.2 Start 

Once connection objects were initialized the connection objects, it is required to start the client and actively 
listen for messages in the RabbitMQ server. To this end, the MitigationActionService class performs the 
interactions shown in Figure 12. 

                 
       

                 
       

           
      

           
      

        
      

        
      

          
       

          
       

        
       

        
       

          
       

          
       

          

          

           

                

                     

                         

                           

                  

                     

                 

               

          

               

       



        

  

Page 17 of 31 
 

 

Figure 12 - Sequence Diagram for start Method 

The figure above shows the principal interactions of the Mitigation Action Service to start the process. It first 
retrieves the basic information to declare the name of the RabbitMQ queue. Later, it determines if it is 
required to bind the queue to an exchange queue (this information is specified by the provider) and it 
performs the binding in case it is required. Then, it retrieves the instance of MASRabbitConsumer class, in 
order to invoke the “basicCosume” method on the channel, defining the callbacks of the instance the MAS 
just retrieved from the Rabbit consumer. 

After this process, the MA relies on the RabbitMQ java library that will invoke the callbacks defined in the 
MASRabbitMQ class. Once a message arrives to the broker, the library will invoke the “handleDelivery” 
method, which will be in charge of processing the message (a JSON string) to generate the MSPL. Figure 13 
shows the sequence diagram of the MSPL computation process. 

                 
       

                 
       

           
      

           
      

        
      

        
      

          
       

          
       

          
       

          
       

       

       

         
        

         
        

                  

         

             

        

                                

                           

      

                   

           

             

        

                     



        

  

Page 18 of 31 
 

 

Figure 13 - Sequence Diagram for handleDelivery Method 

Once the handleDelivery method has been called in the MASRabbitConsumer class, the Mitigation Action 
Service submits a new thread worker to process the received message. This worker will call the MSPLFactory 
class, obtaining the current instance. Then the MAS will send the raw JSON string to the returned 
MSPLFactory instance in order to process the reaction and generate the MSPL. 

The process of the reaction starts in the MSPLFactory class, which parses the JSON (by means of using the 
Jackson fasterXML library) and creates a new instance of an MSPL object using the parsed JSON object. The 
constructor of the MSPL class will use the parsed JSON to find keyword on specific fields of the VDSS alert, in 
order to identify the use case involved. In addition, the constructor will also extract all the key information 
that will be later used when computing final MSPL. 

Once the use case has been identified, the MSPL factory invokes the “computeTransformedMSPL” method. 
This invocation will load the corresponding MSPL template and modify the required fields according to the 
information extracted in the constructor. This invocation finished the creation of the MSPL file for the use 
case. Moreover, the design of the whole MSPL creation engine has been conceived to be easily extensible for 
the second period of the project, in which the MSPL will be computed dynamically with the information of 
the Security Model Analysis Component. 

Once the MSPL has been computed, the MASRabbitConsumer class will invoke the method 
“notifyAllOutputs” on the ReactionOutput class in order to send the computed MSPL to all the activated 
outputs of the service. This includes (but are not limited to) the Security Orchestrator, the DSPS and the local 
terminal (for testing purposes). 

2.2.3.2.3 Stop 

Sometimes it is required to stop the service without completely closing all the connections. This is needed by 
the JSVC library that might decide to restart the service by calling first stop, and then start after it. In this 
scenario, it is important to stop looking for new messages in the RabbitMQ server, avoiding generating new 
MSPL files. 

         
        

         
        

           

           

    

    

        
      

        
      

                    

             

           

       

                     

         

    

                        

          

            

      

    

                      

      



        

  

Page 19 of 31 
 

To this end, the stop method invokes a cancel in the RabbitMQ channel, stopping the execution of the 
“handleDelivery” callback method and, therefore, not allowing reading more messages from the VDSS. 

2.2.3.2.4 Destroy 

This method is automatically invoked after the stop, just before exiting the Java Virtual Machine. Considering 
this, the implementation of this method will simply close the connection to the RabbitMQ server. 

2.2.3.3 Deployment 

Once the development has been completed, the MAS was deployed in a dedicated machine in order to 
actively process the output of the VDSS. In this sense, the deployment of the MAS is continuously receiving 
the alerts from the VDSS and generating the corresponding MSPL for each use case treated in the project. 

To support the development process of the different use cases of the project, the MAS design (as shown in 
Figure 10) includes the implementation of different outputs by means of implementing a single output 
interface. This design also allows activating and deactivating the different implemented outputs, which 
allows debugging and test other parts of the ANASTACIA platform without impacting other already-tested 
modules. 

The deployment of the MAS takes advantage of this feature, by means of activating and deactivating the 
communications channels of the MAS by demand of the partners. This decision was taken in order to avoid 
introducing noise during the testing of the individual components, and therefore obstructing the debugging 
process with test messages coming from other parts of the platform. 

2.2.4 Security Model Analysis 

The Security Model Analysis (SMA) is a component of the Reaction module. This component continuously 
collects and updates through Kafka broker the existing capabilities and their related threats and costs. In fact, 
the SMA component retrieved from the Orchestrator the available capabilities that are supported by the IoT 
infrastructure according to the security policy and the capabilities enforced, and collects from the VDSS the 
corresponding threats. Moreover, it updates the cost of each capability computed by the VDSS. Finally, the 
output will be sent by the VDSS to the MAS in order to generate the accurate MSPL file, the Figure 14 shows 
the SMA interactions. 



        

  

Page 20 of 31 
 

 

Figure 14 - The Security Model Analysis interactions 

2.2.4.1 SMA deployment  

The component is deployed in wrapper fashion to simplify interactions between complex communication 
environment and computational part of SMA. The data wrapper provides external connectivity to AALTO 
security orchestrator via REST API and ATOS XL SIEM component using SSL secured RabbitMQ channel. 

The operations of deployed SMA component (Figure 15) are executed in four steps. During component 
initialization wrapper will request security models from SO component. Next SMA component will start 
receiving analysing thread costs provided by ATOS XL SIEM component. After computing information SMA 
will provide security model analysis that is then sent to ATOS XL-SIEM component on step 3. Lastly in step 4 
ATOS based on the security model analysis and attack verdict messages will generate reactions that will be 
send to SO component for execution in SEP. 

Security Model Analysis
Logic(THALES)

Data wrapper/connector for 
SMA

(UTRC)

Orchestration service
(AALTO)

IoT
Security Enforcement Plane

(AALTO)

XL SIEM
Verdict Decision and Support 

System (ATOS)

Security 
Model 

Analysis

Security 
Models

Reactions

1

2

4

3

Thread
Cost

 

Figure 15 - Interaction between SMA 



        

  

Page 21 of 31 
 

Example of the JSON file generated by the SMA that aggregate the information provided by the security 
orchestrator and VDSS. 

{  

   "Capability1":{  

      "cost":cost1, 

      "threats":[  

         "threat1-1", 

         "threat1-2" 

         "threat1-3" 

      ], 

      "id":0 

   },"Capability2":{  

      "cost":cost2, 

      "threats":[  

         "threat2-1", 

         "threat2-2" 

      ], 

      "id":1 

   }, 

… 

} 

 

2.2.5 Available Capabilities 

Currently the ANASTACIA framework is able to implement a series of countermeasures to protect the IoT 
networks from threats of different kinds and with different objectives. The possible countermeasures are 
reported in Table 2. 

Threats Capabilities 

Insider attack (malware) 

"Authentication",  

"AuthoriseAccess_resource", 

"DTLS_protocol", 

"Filtering_L3", 

"Filtering_L4", 

"Traffic_Divert", 

"IoT_honeynet", 

"IoT_control" 

Man In The Middle 

"Authentication",  

"DTLS_protocol" 

"Anonimity" 

SQL Injection "Filtering_L3", 



        

  

Page 22 of 31 
 

"Filtering_L4", 

"Traffic_Divert", 

"IoT_control" 

Denial of Service 

"Filtering_L3", 

"Filtering_L4", 

"Traffic_Divert", 

0-day 

“         ” 

"Authentication",  

"AuthoriseAccess_resource", 

"DTLS_protocol", 

"Filtering_L3", 

"Filtering_L4", 

"Traffic_Divert", 

"IoT_honeynet", 

"IoT_control" 

Traffic analysis/Sniffing 

“         ” 

"DTLS_protocol", 

"Filtering_L3", 

"Filtering_L4", 

"Traffic_Divert", 
Table 2 - Available capabilities 

In the next release of the Reaction Module, the table will be upgraded with more countermeasures and 
information related to the threats that the framework is able to detect and mitigate. 



        

  

Page 23 of 31 
 

3 SUMMARY OF INTERNAL COMMUNICATION 
This section shows the internal communication between the components of the Reaction module. Details 

can be found in Table 3. 

From To Data Format Services 

Verdict and 
Decision 
Support 
System  

Security Alert 
Service 

Information about detected 
threats in form of Alerts. 

JSON Dedicated 
RabbitMQ queue 
with SSL 

Mitigation 
Action service 

Security Alert 
Service 

Information on policy 
selected to mitigate the 
detected threat 

HTTP POST 
request 
with JSON 
data 

Web server, 
currently only HTTP 
connection 

Verdict and 
Decision 
Support 
System 

Mitigation Action 
Service 

Information about detected 
threads in form of alerts. 

JSON Dedicated 
RabbitMQ queue 
with SSL 

Security Model 
Analysis 

Verdict and Decision 
Support System 

Information about available 
capabilities  

JSON Dedicated 
RabbitMQ queue 
with SSL 

Table 3 - Internal communication Reaction Module 

Future implementation of the communication is reported in the table below.  

From To Data Format Services 

Capabilities 
Database 

Mitigation Action 
Service 

Available capabilities of the 
network and allowed actions 
specified in the Security 
Policy 

- Dedicated database 
shared between 
the Mitigation 
Action Service and 
the System Model 
Analysis 

Mitigation 
Action Service 

Security Alert 
Service 

Computed MSPL and extra 
data about the deployment 
by the Security Orchestrator 

HTTP POST 
request 

Web Server on the 
Security Alert 
Service side 

Table 4 - Future implementation 

  



        

  

Page 24 of 31 
 

4 RELEVANT FEATURES OF THE REACTION MODULE 
The Reaction Module is a critical component of the framework of ANASTACIA, and it concerns the definition 
of the reactions to consider to protect the system from identified cyber-attacks. The attacks are detected by 
the Monitoring module that generates an alert and sends the alert to the Reaction Module.  

The main objective of the module is, starting from the received alert, to execute a procedure that 
automatically defines possible countermeasures to protect the system from attack. As mentioned previously, 
the VDDS component carries out a threat risk assessment and, based on the capabilities available on the 
platform, decides the most convenient countermeasure to protect the system.  

Subsequently, this information is shared with the MAS and SAS components: the MAS component, on one 
hand, is responsible for automatically generating an MSPL file and sharing it with the OS which will be 
responsible for deploying the protection system autonomously and thus mitigating the attack. This process 
is conducted by the MAS using the information provided by the VDSS and, in a second release of this 
component, it will use the information of the deployed security policy and the security capabilities deployed 
in the network. Using this data, the MAS will be able to dynamically compute the countermeasures, 
augmenting the risk analysis – performed in the VDSS – with the information on the security capabilities 
available in the Security Enforcement Plane. This feature will bring a key innovation to the MAS, which will 
be able to suggest a set of proper countermeasures that can actually be deployed by the security 
orchestrator. 

The SAS component, on the other hand, enriches the information received from the VDSS with data regarding 
the selected policies and shares them with the DSPS. The information on the capabilities supported by the 
system are retrieved and stored by the SMA, associating the threats and the relative cost to the available 
policies. 

An important innovative aspect of the ANASTACIA Reaction Module concerns the automatic selection of 
possible countermeasures against an identified attack. The system will automatically take care of identifying, 
deciding and implementing countermeasures to avoid damage to the system on which the framework is 
installed. 

As for the Reaction Module, this component automatically selects possible countermeasures available on the 
system to implement a protection system in the shortest time possible to avoid creating critical damage to 
the system by exploiting the dynamic generation of MSPL files.  

Furthermore, by exploiting the VDSS module, a risk analysis is performed on the identified attack, to 
subsequently share this information with the Seal Manager module. 



        

  

Page 25 of 31 
 

5 CONCLUSIONS AND FUTURE WORK 
This document presented the advancements on the development of the Reaction Module components of 
the ANASTACIA Platform. Initially, an overview of the actual state of the infrastructure of the ANASTACIA 
framework is presented. After the overview, the deliverable describe in details the Reaction Module and its 
component. 

For the different component of the Reaction module, a technical description is provided. In particular, the 
objective of the component and the communication with the connected entity is presented in order to 
understand the flow of information and how the module define the countermeasures for a detected threat. 

The aim of this first version of the Reaction module is to develop and interconnect the different component 
in order to create an initial version of the module. Some modules are developed for this purpose instead 
other modules are modified in order to adapt their functionalities to the activities required by the Reaction 
Module. Also, future implementations are proposed to enhance the quality of this ANASTACIA framework. 

The Reaction Module is also characterized by innovative aspects, implemented to optimize and protect 
networks and devices of the system more efficiently. By adopting a security by design approach to improve 
security aspects of the system, the Reaction Module is indeed able to autonomously decide (without the 
need of human actions) the countermeasures to be applied when a cyber-attack is detected. Furthermore, 
once an attack is detected, its impact on the system is reduced to very short time, since the deployment of 
security countermeasures requires minimum amounts of time, close to real-time. Another interesting 
characteristic of the Reaction Module is that the components are able to manage large number of detection 
events and, in case multiple threats are identified by the ANASTACIA framework, the Reaction Module is able 
to manage a cluster of devices, in order to elaborate large numbers of events coming from the other 
ANASTACIA modules. 

This deliverable closes the first development iteration of the Reaction Module. The aim of this document is 
to develop a first working version that could be used as a proof of concept, adopted to basis for the second 
iteration of development to implement more functionalities. 

  



        

  

Page 26 of 31 
 

6 ANNEX I. CATEGORIES AND SUBCATEGORIES OF SECURITY ALERTS 
 

Category  Subcategory_id 

Exploit 

 ActiveX 

 Attack_Response 

 Browser 

 Buffer_Overflow 

 Command_Execution 

 Cross_Site_Scripting 

 Denial_Of_Service 

 Directory_Traversal 

 DNS 

 File_Inclusion 

 Format_String 

 FTP 

 Linux 

 Mail 

 Misc 

 PDF 

 Samba 

 Shellcode 

 Spoofing 

 SQL_Injection 

 Windows 

Authentication 

 Account_Lockout 

 Account_Unlocked 

 Admin_Access 

 Auth_Required 

 Bruteforce 

 Bypass 

 Cleartext 

 Default_Credentials 

 Disclosure 

 Error 

 Failed 

 FTP_Login_Failed 

 FTP_Login_Succeeded 

 Group_Added 

 Group_Changed 

 Group_Deleted 

 Login 

 Logout 

 Misc 

 Password_Change_Failed 

 Password_Change_Succeeded 

 Policy_Added 

 Policy_Changed 

 Policy_Deleted 

 User_Changed 

 User_Created 

 User_Deleted 



        

  

Page 27 of 31 
 

Access 

 ACL_Deny 

 ACL_Permit 

 Connection_Closed 

 Connection_Opened 

 File_Access 

 File_Blocked 

 Firewall_Deny 

 Firewall_Misc_Event 

 Firewall_Permit 

 Misc 

 Timeout 

 Traffic_Inbound 

 Traffic_Outbound 

 Tunnel_Closed 

 Tunnel_Connection 

 Web_Application_Access 

Malware 

 Adware 

 Backdoor 

 Fake_Antivirus 

 Generic 

 KeyLogger 

 Spyware 

 Trojan 

 Virus 

 Virus_Detected 

 Worm 

Policy 

 Anonymity 

 Check_Failed 

 Check_Passed 

 Games 

 Instant_Messaging_Chat 

 Other 

 P2P 

 Phishing 

 Porn 

Denial of Service 

 Application 

 DDoS 

 Flood 

 Other 

 Web_Application 

Suspicious 

 Bad_Traffic 

 Blacklist_Address 

 Database_Activity 

 DNS_Activity 

 DNS_Protocol_Anomaly 

 FTP_Protocol_Anomaly 

 HTTP_Protocol_Anomaly 

 Mail_Activity 

 Mail_Protocol_Anomaly 

 Netbios_Activity 

 Network_Activity 

 Network_Anomaly 



        

  

Page 28 of 31 
 

 NFS_Activity 

 RPC_Activity 

 Scada_Activity 

 SSH_Activity 

 SSH_Protocol_Anomaly 

 Telnet_Protocol_Anomaly 

 Threshold_Exceeded 

 Web_Attack_or_Scan 

Network 
 

 BOOTP_Activity 

 DHCP_Activity 

 FTP_Activity 

 H.323_Activity 

 High_Load 

 IGMP_Activity 

 IKE_Activity 

 IPSEC_Activity 

 L2TP_Activity 

 Misc 

 NTP_Activity 

 OCSP_Activity 

 PKI_Activity 

 PPP_Activity 

 PPTP_Activity 

 RIP_Activity 

 SIP_Activity 

 SMTP_Activity 

 SNMP_Activity 

 SSL_Activity 

 Telnet_Activity 

 TFTP_Activity 

Recon 
 Misc 

 Scanner 

Info  Misc 

System 
 

 Alert 

 Configuration_Changed 

 Configuration_Error 

 Critical 

 Debug 

 Emergency 

 Error 

 Information 

 Locked 

 Notification 

 Process_Started 

 Process_Stopped 

 Restart 

 Service_Started 

 Service_Stopped 

 Software_Installed 

 Started 

 Stopped 

 Unlocked 



        

  

Page 29 of 31 
 

 Warning 

Antivirus 
 

 Definitions_Updated 

 Definitions_Updated_Failed 

 Disabled 

 Error 

 Scan_Finished 

 Scan_Started 

 Started 

 Unknown_Event 

 Virus_Detected 

 Virus_Quarantine 

 Virus_Quarantine_Failed 

Application 

 DHCP_Error 

 DHCP_Lease 

 DHCP_Misc 

 DHCP_Pool_Exhausted 

 DHCP_Release 

 DHCP_Request 

 DNS_Misc 

 DNS_Succesful_Zone_Tranfer 

 DNS_Zone_Transfer_Failed 

 FTP_Command_Executed 

 FTP_Connection_Closed 

 FTP_Connection_Opened 

 FTP_Error 

 FTP_Misc 

 Mail_Dropped 

 Mail_Received 

 Mail_Sent 

 Mail_Server_Misc 

 Spam_Detected 

 VPN_Closed 

 VPN_Denied 

 VPN_Misc 

 VPN_Opened 

 Web_Closed 

 Web_Denied 

 Web_Error 

 Web_Misc 

 Web_Modified 

 Web_Not_Found 

 Web_Opened 

 Web_Proxy 

 Web_Redirected 

 Web_Reset 

 Web_Terminated 

Voip 

 Call_Ended 

 Call_Started 

 Misc 

Alert 

 HostIDS_Alert 

 IDS_Alert 

 IPS_Alert 



        

  

Page 30 of 31 
 

Availability 

 State_Critical 

 State_Down 

 State_Unknown 

 State_Unreachable 

 State_Up 

 State_Warning 

Wireless 
 

 Anomaly 

 Association 

 Authentication 

 Client_Associated 

 Deauthentication 

 Disassociation 

 Flood 

 Misc 

 New_Network 

 Probe 

 Scanner_Detected 

 Spoofing 

Inventory 

 Mac_Change 

 Mac_Detected 

 Mac_Misc 

 Operating_System_Change 

 Operating_System_Detected 

 Operating_System_Misc 

 Service_Change 

 Service_Detected 

 Service_Misc 

Honeypot 

 Attack_Detected 

 Connection_Closed 

 Connection_Opened 

 Misc 

Database 

 Error 

 Login 

 Login_Failed 

 Logout 

 Misc 

 Query 

 Start 

 Stop 

Alarm 

 Attacks 

 Bruteforce 

 Dos 

 Malware 

 Misc 

 Network 

 Policy 

 Scada 

 Scan 

FastFlux   

Spam   

Mobile 
 Bot 

 C&C 



        

  

Page 31 of 31 
 

 Event 

 Malicious 

 Suspicious 

Websites 

 Bot 

 C&C 

 Malicious 

 Suspicious 

 Vulnerable 

Attack 

 abuse 

 compromise 

 data 

 dos 

 dos.dns 

 dos.http 

 dos.tcp 

 dos.udp 

 login 

 malware 

 other 

Bot 
 fast_flux 

 other 

CCH Report   

Botnet 

 c2 

 other 

 p2p 

C2_Server 

 http 

 irc 

 other 

Malicious 

 exploit 

 malware 

 other 

 phishing 

Vulnerable   

Table 5 - Categories and subcategories of security alerts at the VDSS 


