

ANASTACIA has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement N° 731558

and from the Swiss State Secretariat for Education, Research and Innovation.
This document only reflects the ANASTACIA Consortium’s view.

The European Commission is not responsible for any use that may be made of the information it contains.

D3.4
Final Security Enforcement
Manager Report
This deliverable presents the results of ANASTACIA Task 3.1, which aims
to manage the final stage of the enforcement of security requirements
established in high-level terms, i.e. security policies, through the
ANASTACIA architectural components. Such a final stage is intended to
perform security policies refinement from high-level to medium-level,
medium-level conflict detection and dependencies identification, and
finally, medium-level policies translation and policies management issues
notification.

Distribution level PU

Contractual date 30.09.2019 [M33]

Delivery date 30.09.2019 [M33]

WP / Task WP3 / T3.1

WP Leader UMU

Authors Alejandro Molina Zarca, Jorge Bernal Bernabé,
Antonio Skarmeta (UMU), Bagaa Miloud (AALTO)

EC Project Officer Carmen Ifrim
carmen.ifrim@ec.europa.eu

Project Coordinator Softeco Sismat SpA
Stefano Bianchi
Via De Marini 1, 16149 Genova – Italy
+39 0106026368
stefano.bianchi@softeco.it

Project website www.anastacia-h2020.eu

mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/

Page 1 of 35

Table of contents

PUBLIC SUMMARY ... 4

1 Introduction ... 5

1.1 Aims of the document ... 5

1.2 Applicable and reference documents ... 5

1.3 Revision History ... 6

1.4 Acronyms and Definitions ... 6

2 State Of The Art ... 8

3 Discussion on Progress Beyond the State of the Art ... 10

4 Security Enforcement Management Design .. 11

4.1 Main components .. 12

4.1 Main interfaces .. 15

5 Security Enforcement Management Processes ... 19

5.1 Policy Refinement and Translation Processes ... 19

5.1.1 HSPL to MSPL Refinement ... 19

5.1.2 MSPL to Low-level Enforcement.. 21

5.2 Policy Conflict and Dependencies detection Process .. 22

6 Final Policy-Based Security Enforcement Management Implementation .. 24

6.1 Policy Editor Tool Implementation .. 24

6.2 Policy Interpreter Implementation .. 26

6.2.1 H2MService .. 26

6.2.2 M2LService .. 27

6.3 Policy Conflicts and Dependencies Detector Implementation .. 28

6.4 Security Orchestrator Implementation ... 30

6.5 Security Enablers Provider Implementation .. 32

7 Conclusions .. 33

8 References ... 34

Page 2 of 35

Index of figures

Figure 1: vAAA DTLS application .. 10

Figure 2: ANASTACIA architecture ... 11

Figure 3: H2M Process ... 20

Figure 4: M2L process .. 21

Figure 5: Conflict detection and dependencies enforcement process.. 22

Figure 6: Policy Editor Tool HSPL-OP Modeling ... 24

Figure 7: HSPL-OP Editor UI ... 24

Figure 8: HSPL-OP Editor UI dependencies ... 25

Figure 9: Policy Editor Tool HSPL-OP Refinement ... 25

Figure 10: Policy Editor UI Successful Refinement .. 25

Figure 11: Dependency and Conflict detection ... 26

Figure 12: h2mService implementation .. 26

Figure 13: m2lservice implementation .. 27

Figure 14: m2lservice output example .. 28

Figure 15: mcdtservice implementation ... 29

Figure 16: MSPL Pyke rule example... 29

Figure 17: mcdtservice output example .. 30

Figure 18: Security Orchestrator Implementation Architecture ... 31

Page 3 of 35

Index of tables

Table 1: Policy Editor UI description .. 12

Table 2. Policy Interpreter description .. 12

Table 3. Conflict detector description ... 13

Table 4. Security Enabler Provider description ... 13

Table 5. System Model Service description ... 14

Table 6. Security Orchestrator description ... 14

Table 7. Policy Editor User Interface ... 15

Table 8. Policy Interpreter H2M Interface ... 16

Table 9. Policy Interpreter M2L ... 16

Table 9. Policy Conflict Detector Interface .. 17

Table 10. Policy Repository Interface .. 17

Table 12. Security Enabler Provider Interface ... 18

Page 4 of 35

PUBLIC SUMMARY
This deliverable describes the outcomes of task 3.1, which is in charge of designing and developing
algorithms, protocols & mechanisms required for policy refinement, translation as well as conflicts and
dependencies detection in the Policy Interpreter of the ANASTACIA architecture.

The main objective of the task is to carefully behold the interactions among IoT objects and the ANASTACIA
architecture components to ensure that security requirements are met in an end-to-end fashion. Those
security requirements are established in high-level terms, namely in the form of high-level security policies
affecting all or a selected set of objects, or even defining a global desire to defend privacy or other security
aspects. This task also develops a policy conflict and dependencies detector. Once a policy or a set of
policies are defined, the conflict detector analyses them in order to detect different kind of conflicts and
dependencies. The Policy Interpreter (in the past Enforcement Manager) then is in charge of refine,
translate and manage security policies at different levels of abstraction.

In this sense, this particular deliverable is the report regarding the Security Policy Interpreter module of the
ANASTACIA framework, including its goals, design (such as interfaces, processes, relationships within the
rest of Architectural components), main features, as well as the latest advances in its development.

Page 5 of 35

1 INTRODUCTION

1.1 AIMS OF THE DOCUMENT

This document is part of ANASTACIA WP3 “Policy Enforcement and Run Time Enablers”, which aims to
design and develop algorithms, protocols & mechanisms that form the intelligence of the Security
Enforcement Manager processes, addressed by the policy interpreter, the ANASTACIA security orchestrator
and the Security Enforcement Enablers. Provide effective co-ordination between various and
heterogeneous policy nodes by specifying (within the architecture) constraints and trade-offs at the micro
level, to create robustness, efficiency and performance at the policy. Explore the opportunities that NFV
and SDN jointly offer in intelligently coping with security threats against IoT services and enable the
orchestration of network and cloud resources in a security policy-driven fashion.
Concretely, this deliverable is scoped in Task 3.1 of WP3, which aims to carefully behold the interactions
among IoT objects and the ANASTACIA architecture components in order to ensure that security
requirements are met in an end-to-end fashion. Those security requirements are established in high-level
terms, namely in the form of policies affecting all or a selected set of objects, or even defining a global
desire to defend privacy or other security aspects. This task will also develop an inference engine to enable
security policy analysis.
The Policy Interpreter will be in charge of mapping policies defined for the flows and E2E communications
to a collection of security properties to be deployed for dealing with security aspects required by objects,
without altering their normal operations. Security policies will be enforced by the SDN controllers and the
NFV MANO orchestrator at the Control Plane of the system. The management/orchestration of the security
policies across the different components of the ANASTACIA architecture is carried out by the ANASTACIA
Security Orchestrator, defining close coordination between this task and the other two tasks of WP3.
The main goal of this particular deliverable is to provide the outcomes regarding policy the Policy Editor
Tool and the Security Policy interpreter modules of the ANASTACIA framework, including the design,
interfaces, features as well as the development.
This document is structured as follow: Section 2 provides a state of the art of current policy refinement
solutions, techniques and related solutions. Section 3 provides a discussion on progress beyond the state of
the art. Section 4 gives an overview of the policy enforcement manager modules design, contextualizing the
policy interpreter in the ANASTACIA framework. Section 5 is the core of the deliverable, since it defines the
policy enforcement process, intended to translate the high-level policy intents or “desires” to specific
configurations enforceable in the underneath infrastructure (either physical or virtual system). Section 6
describes the implementation of the policy interpreter, policy editor tool, security enablers provider as well
as an overview of the security orchestrator implementation which will be described more in detail in
deliverable D3.5. Finally, section 7 concludes this deliverable.

1.2 APPLICABLE AND REFERENCE DOCUMENTS

This document refers to the following documents:

• ANASTACIA project deliverable D1.3 – Initial Architecture Design.

• ANASTACIA Grant Agreement N°731558 – Annex I (Part A) – Description of Action.

• ANASTACIA Consortium Agreement v1.0 – December 6th 2016.

• ANASTACIA deliverable D1.1 – Holistic Security Context Analysis.

• ANASTACIA deliverable D1.2 – User-centred Requirement Initial Analysis.

• ANASTACIA deliverable D2.1 – Policy-based Definition and Policy for Orchestration, initial report.

• ANASTACIA deliverable D2.5 – Policy-based Definition and Policy for Orchestration, final report.

Page 6 of 35

1.3 REVISION HISTORY

Version Date Author Description

0.1 04.07.2019 Alejandro Molina
Zarca (UMU)

First table of contents and first contribution

0.2 22.07.2019 Alejandro Molina
Zarca, Jorge
Bernal, Antonio
Skarmeta (UMU),
Miloud Bagaa
(AALTO)

Table of contents update

0.3 23.07.2019 Alejandro Molina
Zarca (UMU)

Sota and key innovation

0.4 24.07.2019 Alejandro Molina
Zarca (UMU)

Section 4

0.5 25.07.2019 Alejandro Molina
Zarca (UMU)

Section 5

0.6 26.07.2019 Alejandro Molina
Zarca (UMU)

Section 6

0.7 05.09.2019 Alejandro Molina
Zarca (UMU)

Sota and conclusions review

0.8 06.09.2019 Alejandro Molina
Zarca, Jorge
Bernal, Antonio
Skarmeta (UMU)

Internal review

0.9 26.09.2019 Miloud Bagaa
(AALTO) and
Mohammed
Boukhalfa

Internal review

1.4 ACRONYMS AND DEFINITIONS

Acronym Meaning

MSPL Medium-level Security Policy Language

HSPL High-level Security Policy Language

PDP Policy Decision Point

PEP Policy Enforcement Point

SEC Security Enforcement Manager

Page 7 of 35

CIM Common Information Model

SPL Security Policy Language (SPL)

SDL System Description Language

NSF Network Security Functions

BMS Building Management Systems

CPS Cyber Physical System

CRUD Create, Read, Update, and Delete

DSPS Dynamic Security and Privacy Seal

IoT Internet of Things

MANO Management and Orchestration

MEC Mobile (Multi-access) Edge Computing

NFV Network Function Virtualization

SDN Software Defined Networking

PSA Personal Security Application

M2L Medium to Low

Page 8 of 35

2 STATE OF THE ART
This section presents a state of the art for policy refinement and translation processes, as well as conflict
detection and main related technologies.

Common Information Model (CIM) [1] is the main DMTF standard which provides a common definition of
management-related information independent of any specification. The model defines concepts for
authorization, authentication, delegation, filtering, and obligation policies. However, for an information
model to be useful, it has to be mapped into some specification and for this purpose, CIM models are not
suitable by themselves, due to the huge number of classes that composes it. xCIM High-level Security Policy
Language (SPL) defined in [2], allows to the administrator the definition of security policies using a friendly
language, near to the spoken English. It also has an internal format which is a language for formal modelling
and low-level abstraction that is oriented to developers. On the other hand, xCIM System Description
Language (SDL) is a sub-model that represents the medium level abstraction representation for system
description. Meanwhile, xCIM Security Policy Language (SPL) is a sub-model of CIM that represents the
medium/low level abstraction representation for security policies. Both in scope of POSITIF [3] and
DESEREC [4] European projects. To process the policies, xCIM provides tools such a Policy Console and a
Policy Translation Service that allow the definition and refinement of high-level rules. In other words, the
translation from the high-level specification to low-level rules specified by a language based CIM-Policy
Information Model (i.e. xCIM-SPL or internal format). These kinds of tools reduce the errors and permit
additional checks. Due to the lack of information provided by the natural human concepts, the authors use
templates to fill the required information, generating finally the final xCIM-SPL result. The tasks Transform
and Complete showed in the figure, are deployed by XML Style Sheets (XSL) transformation because all
documents (i.e. templates, xCIM-SPL definitions and SPL definition) are represented by XML.

By extending concepts and functionality from xCIM-SPL also present security policies at two levels of
abstraction which must be refined/translated before they can be enforced. High-level Security Policy
Language (HSPL) and the Medium-level Security Policy Language (MSPL) are two abstractions defined
within the European SECURED [5] project to specify security policies based on the capability concept. A
capability is the ability to provide a specific security functionality by a security enabler or component. HSPL
is though for coarse-graned policies, allowing to define general policies to non-technical users, being
independent on the underlaying technologies. On the other hand, MSPL allows to specify information close
to the implementation, but still technology independent. Thus, HSPL/MSPL extend and improve the idea
exposed on xCIM-SPL/SDL of two levels of device-independent languages, a lower dependent one and the
use of capabilities. Regarding the refinement process, the first step consists on identifying the required
capabilities of the HSPL policy. Once identified the capabilities, it is necessary to identify the Personal
Security Application (PSA). The PSA can be defined as a hardware or software component able to enforce
the identified capabilities. If there is not available any component implementing the required
functionalities the process will return a non-enforzable analysis, otherwise, it will be performed a
translation of an HSPL policy into MSPL policies, also including a service graph indicating which PSA could
take care of which MSPL policy. Since MSPL is still device-independent, it must be translated into a specific
security configuration for a specific Personal Security Application (PSA). In this case, a coordinator requests
a M2L translation to a M2L service in order to translate a MSPL policy to a PSA specific configuration,
indicating the PSA id. To support a wide set of low-level security controls, the translation is designed to be
multi-device (e.g. netfilter/iptables or PF for a stateful firewall). The proposed approach uses a M2L
(Medium-to-Low) plugin repository which contains a set of plugins that implements the translation
between MSPL and the specified configuration. The plugins then, can be loaded by the M2L service in order
to get the PSA configuration depending on the PSA id specified.

In [9] authors look at a general policy-based architecture in order to simplify several technologies in the
context of IP networks. The solution can be considered as an adaptation of the IETF policy framework for

Page 9 of 35

network provisioning, focused on a policy management tool. In the same way as previous cases, this policy
management tool supports different levels of abstraction, i.e., business level and technical level, and it is
composed by several components. It includes: i) the user interface which consists on a command line and
graphic tools; ii) the resource discovery in order to determine the topology of the network; iii) the policy
transformation logic component which is responsible to translate the business-level policies into
technology-level policies as well as verify the policies are consistent, correct and feasible. Finally, the policy
distributor which basically writes the technology-level policies to a repository. In a general way, authors
also describe different types of policy representations from if-else semantics to policy schemas. They also
provide generic high-level examples regarding conflict resolution as well as policy translations by using
eXtensible Stylesheet Language Transformations (XSLT).

A less generic approach can be found at [10] where authors focus on management and translation of
filtering security policies. They present a set of techniques in order to perform rules insertion, modification
and removal, automatic discovery for rules conflicts, as well as filtering policies translation. Regarding the
policy representation, they present a policy tree which represents the filtering rules, starting from the
network protocol and ending with the specific action (protocol-src_ip-src_port-dst_ip-dst_port-action). For
policy anomalies, authors focus on shadowed, correlation, generalization and redundancy and the basic
idea for anomalies discovery is based on to determine if any two rules are in the same path of the policy
tree. Regarding policy translation, the proposed solution translates the rules into policy tree paths in order
to aggregate common branches and optimize future operations. This is, common values in different rules
will follow the same path of the policy tree from the root, so here the policy translation can be seen as to
find the best field ordering that provides maximum aggregation of a set of related rules.

Since policy-based network management seems to share the same philosophy about using security policies
at different levels of abstraction, [11] claims that there is a lack of tools supporting that strategy, so they
provide an ontology to represent the domain knowledge and then perform reasoning to create the
network-level security controls. The main objective is to derive configurations for security controls based
on ACL and secure channel mechanisms from a fixed set of business policies by using an automatic
approach and interacting with the administrator when required. Authors then distinguish between two
different kind of controls, these are, OS-level and application-level. In order to test the framework, authors
also provide seven high-level security policy instances. These policy translation process then identifies the
users and the involved devices and generates the device configurations for each of them.

In general, policy-based frameworks must be enriched with policies analysis in order to detect different
types of anomalies depending on the policy domain, and there are several efforts in the literature covering
in different ways this topic, from simple or specific analysis up to ontologies and taxonomies definition. In
this regard, [14] contributes to the development of a specific IPSec policy management. They defined a
high-level security requirement which can be used not only for generating IPSec configurations but also can
be used as criteria to detect conflicts. In this domain, authors identify conflicts if the set of IPSec security
policies together do not satisfy the security requirements. In a more generic approach, [13] authors analyse
the types of overlap which may occur between policies as well as some possible approaches to the
prevention. They classify conflicts in conflict of modalities and conflict of goals, and they identify different
kind of conflicts and they provide an analysis of when each conflict occurs in the system. Following a similar
approach, [14] provides a taxonomy of semantic conflicts and analyses the main features of each of them,
also providing modelling for certain realistic scenarios. Our work is based on this effort and it extends the
conflicts, also adding dependencies to the analysis.

Page 10 of 35

3 DISCUSSION ON PROGRESS BEYOND THE STATE OF THE ART
The deliverable D2.5 showed the beyond the state of art regarding the extended security policy features
and the new ones. The implementation of these security models and the security enforcement
management process allow us to deploy complex IoT scenarios and validate the new security policy models.
Since several previous works are focused on networking policies, the first use cases we contemplated were
in that direction. In this way [19] showed the first integration of ANASTACIA components and it provided a
comparison between the performance of networking policy enforcement through different security
enablers like ONOS and ODL SDN controller but also comparing this new approach with a more traditional
one like the enforcement in a virtual router by using NETCONF. Beyond networking security policies,
current implementation takes into account different kind of policy models for different purposes. Figure 1
shows the main concept proposed in one of the ANASTACIA results. In this case, the implementation allows
us to establish proactively networking, authentication and authorization security policies, as well as to
distribute crypto keys as part of the process for an IoT domain. The implementation also allows to specify
security policies in reactive way which in this case will allow the DTLS traffic from the IoT device to the
vProxy once the IoT device has been properly authenticated and authorised to put a specific resource in its
IoT Broker.

Figure 1: vAAA DTLS application

The previous approach shows networking reactive capabilities as result of authentication and authorization
events, in [20] we presented the deployment of a use case where IoT devices in a building have been
compromised and they provide abnormal behaviours. Then, IoT management policies are deployed as a
reaction of the misbehaviour. The implementation then allows us to translate the reactive security policies
as well as to enforce them through the northbound API of the IoT Controller. Considering this scenario, in
the paper, we showed different performance metrics as result of the implementation. These are only
examples of the ANASTACIA evolution and its application in different scenarios, current implementation
allows to define HSPL Orchestration Policies (HSPL-OP) and MSPL Orchestration Policies (MSPL-OP) in
proactive and reactive way as well as to enforce them taking into account conflicts, dependencies and
different security enablers depending on the nature of the security policy.

Page 11 of 35

4 SECURITY ENFORCEMENT MANAGEMENT DESIGN

The ANASTACIA architecture was already presented in D1.3. It has been evolved and the details about
component modifications and their interactions will be presented in D1.5. This section is intended to be
focused in those planes and components who provides the security enforcement management.

Figure 2: ANASTACIA architecture

Figure 2 shows the a high-level overview of some components which participate in the security
enforcement management within the User Plane and the Security Orchestrator Plane of the ANASTACIA
framework. The involved planes and components are:

• The User Plane provides interfaces, applications and tools that help system administrators to manage
the IoT platform through the ANASTACIA framework. For instance, it is possible to configure pro-active
security policies in order to enforce some initial requirements by using the Policy Editor UI. Other
components like DSPS UI and Alerting and reaction dashboard have been omitted from the picture for
this section.

• The Security Orchestrator Plane is in charge to perform policy refinement, translation and conflict
detection processes by using the Policy Interpreter and the Policy Conflict Detector in order to obtain
valid final configurations according on the requirements defined by the administrators or by the
mitigation service. This plane is also is in charge to decide the best place to enforce the security policies
and enforce them by using the different components of the Security Orchestrator, as well as to
manage the system model, this is, all the information gathered regarding the underlaying
infrastructure. Security Orchestrator and System Model will be detailed on deliverable D3.5.

Page 12 of 35

4.1 MAIN COMPONENTS

This section (extended from D3.1) provides a more detailed description by the components involved on the
security enforcement management process. Specifically, they are the Policy Editor Tool (Table 1), the Policy
Interpreter (Table 2), the Policy Conflict Detector (Table 3), the Security Enabler Provider (Table 4), the
System Model Service (Table 5) and the Security Orchestrator (Table 6). Following it is provided an
overview of functionalities, subcomponents, sources and consumers, the activities they are involved and
the previously available assets.

Table 1: Policy Editor UI description

Policy Editor UI

Function

The Policy Editor Tool allows administrators to model orchestration security policies in
the High-level Security Policy Language (HSPL) policies extended for the ANASTACIA
scope. It also notifies if the new policies will generate conflict or dependencies in the
system.

Subcomponent -

Sources User/Admin

Consumers Policy Interpreter and Conflict Detector

ANASTACIA
activities
involved

Security Policy Set-up

Available
assets

UMU Web front-end service implementation

Table 2. Policy Interpreter description

Policy Interpreter

Function
The Policy Interpreter refines orchestration High-level Security Policy Language (HSPL)
policies into orchestration Medium-level Security Policy Language (MSPL) policies. It also
translates orchestration MSPL policies into Enablers/VNFs configuration or tasks.

Subcomponent
High to Medium Service (HSPL to MSPL)

Medium to Lower Service (MSPL to specific configurations/tasks)

Sources

Policy Editor Tool

Orchestrator

Security Enabler Provider

System Model Service

Consumers
Orchestrator

Policy Conflict Detector

Page 13 of 35

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

Available
assets

UMU policy Interpreter implementation

Table 3. Conflict detector description

Policy Conflict Detector

Function
Policy Conflict detector allows to detect conflicts and dependencies in orchestration
Medium-level Security Policies like same behaviour conflict, priority dependency conflict,
duties conflict, event dependency, managers conflict and override conflict.

Subcomponent -

Sources

Policy Editor Tool

Policy Interpreter

Orchestrator

System Model Service

Consumers

Policy Editor Tool

Policy Interpreter

Orchestrator

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

Available
assets

UMU policy conflict detector service implementation

Table 4. Security Enabler Provider description

Security Enablers Provider

Function

The Security Enabler Provider is able to identify the list of security enablers which provide
specific security capabilities to meet the security policies requirements. Besides, this
component will be endowed with an interface for delivering security M2Lplugins which
will be used for the Policy Interpreter in order to perform the M2L translation process.

Subcomponent -

Sources
Policy Interpreter

Security Orchestrator

Consumers Policy Interpreter

Page 14 of 35

Security Orchestrator

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

Available
assets

UMU/THALES security enabler provider service implementation

Table 5. System Model Service description

System Model Service

Function
The System Model Service provides all the information regarding the architecture,
network topology and current services.

Subcomponent -

Sources All components are able to enrich the system model

Consumers All components are able to request system model information.

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

Monitoring

Reaction

Available
assets

UMU/AALTO system model definition

AALTO system model service implementation

Table 6. Security Orchestrator description

Security Orchestrator

Function

The ANASTACIA Security Orchestrator oversees orchestrating the security enablers
according to the defined security policies. To this aim, it is involved in the selection of the
best security enablers accounting for their security capabilities, the available resources in
the underlying infrastructure, and the policies requirements.

Subcomponent Subcomponents will be properly detailed in deliverable D3.5

Sources

Interpreter

Security Enablers Provider

Mitigation Action Service

Consumers

Security Enforcement Plane (Control and Management Domain components)

Policy Interpreter

Policy Conflict Detector

Page 15 of 35

Policy Repository

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

Available
assets

AALTO security orchestrator implementation

4.1 MAIN INTERFACES

This section describes the main interfaces for components involved in the security enforcement
management. In the same way that the previous section, interfaces are exposed in a set of tables which
shows the name of the interface, a short description, the component which provides the interface, input
and outputs, pre and post conditions and the activities where the interface is involved. Security
Orchestrator and System Model Service interfaces has been omitted since they will be explained in
deliverable D3.5.

Table 7. Policy Editor User Interface

Policy Editor User Interface

Description
The Policy Editor User Interface allows defining orchestration HSPL policies by
providing different parameters.

Component
providing the
interface

Policy Editor Tool

Input data

Orchestration HSPL policies including:

Priority, Action, Object, Subject, Target, Purpose, Resource
and dependencies.

Output Data

Orchestration HSPL policy

Orchestration MSPL policy and conflict detection and
dependencies notification.

Consumer
components

User/Admin

Pre-conditions

System Model must contain the high-level information in order to allow user select
high-level terms, e.g., IoT-device-1

Policy Interpreter and Policy Conflict Detector must be up and running in order to
perform the policy refinement and conflict detection.

Security Policies repository must be deployed in order to maintain a registry of policy
status.

Security Enabler Provider must be deployed in order to verify if there is any enabler
capable to enforce the policy requirements (capability).

Post-conditions -

ANASTACIA Security Policy Set-up

Page 16 of 35

activities involved

Table 8. Policy Interpreter H2M Interface

High to Medium interface (H2MI)

Description
The interface allows to request the policy refinement process from orchestration High-
level Security Policy language (HSPL) policies to orchestration Medium-level Security
Policy language (MSPL) policies.

Component
providing the
interface

Policy Interpreter

Input data Orchestration HSPL policy

Output Data Orchestration MSPL policy

Consumer
components

Policy Editor Tool/User/Admin

Pre-conditions

Orchestration HSPL policy has been previously defined.

Security Enabler Provider must be deployed in order to verify if there is any enabler
capable to enforce the policy requirements (capability).

System Model service must be deployed in order to refine high-level terms, e.g.,
device:address.

Security Policies repository has been deployed in order to maintain a registry of policy
status.

Post-conditions -

ANASTACIA
activities involved

Security Policy Set-up

Table 9. Policy Interpreter M2L

Medium to Lower interface (M2LI)

Description
The interface allows to request a policy refinement from orchestration Medium-level
Security Policy Language (MSPL) policies to specific enabler configurations.

Component
providing the
interface

Policy Interpreter

Input Data Orchestration MSPL policy

Output Data Security Enabler configurations

Consumer
components

Policy Editor Tool

Security Orchestrator

Pre-conditions Orchestration MSPL policy has been previously defined.

Page 17 of 35

System Model service must be deployed in order to security orchestrator is able to
decide the best security enabler.

Security Enabler Provider has been deployed in order to security orchestrator is able
to obtain the best security enabler plugin.

Security Policies repository has been deployed in order to maintain a registry of policy
status.

Post-conditions -

ANASTACIA
activities involved

Security Policy Set-up

Security Orchestration

Table 10. Policy Conflict Detector Interface

Medium Conflict Detection Interface (MCDTI)

Description
The interface allows to request a medium-level policy conflict and dependencies
detection.

Component
providing the
interface

Conflict Detector

Input Data Orchestration MSPL policy

Output Data Orchestration MSPL policy conflicts and dependencies.

Consumer
components

Policy Editor Tool

Security Orchestrator

Pre-conditions

Orchestration MSPL policy has been previously defined.

System Model service must be deployed in order to retrieve information about the
current deployments.

Security Policies repository has been deployed in order to retrieve information about
the current security policies.

Post-conditions -

ANASTACIA
activities involved

Security Policy Set-up

Security Orchestration

Table 11. Policy Repository Interface

Policy Repository Interface

Description

The interface allows to store in the policy repository the correspondence among
orchestration HSPL and MSPL policies, as well as MSPL with security enabler
configurations and the current enforcement status. It also allows retrieving policy
templates as well as the stored security policies information.

Page 18 of 35

Component
providing the
interface

Policy Repository

Input Data HSPL, MSPL | MSPL, Conf | MSPL, status

Output Data Acknowledgement | security policies information

Consumer
components

Policy Interpreter

Security Orchestrator

Pre-conditions HSPL, MSPL | MSPL, Conf | MSPL, status must be properly defined

Post-conditions -

ANASTACIA
activities involved

Security Policy Set-up

Security Orchestration

Table 12. Security Enabler Provider Interface

Security Enabler Provider Interface

Description
The interface allows requesting the available security enablers capable to enforce the
orchestration MSPL policy. The interface also allows to request a specific plugin for a
security enabler.

Component
providing the
interface

Security Enabler Provider

Input Data List of capabilities | security enabler ID

Output Data
List of candidate security enablers | Security enabler
plugin

Consumer
components

Policy Interpreter

Security Orchestrator

Pre-conditions
Security Enabler Provider has been properly configured with a correspondence
between capabilities and security enablers.

Post-conditions -

ANASTACIA
activities involved

Security Policy Set-up

Security Orchestration

Page 19 of 35

5 SECURITY ENFORCEMENT MANAGEMENT PROCESSES

The security enforcement management is composed by different processes in order to manage and enforce
the security policies defined by the administrator or by the Mitigation Action Service (MAS). If the
orchestration security policies are defined at high-level (by the admin) it is required a policy refinement
process in order to transform the high-level security policies into medium-level security policies. If the
orchestration security policies are provided at medium-level (by the MAS or by the administrator) it is
necessary to perform a policy translation process in order to translate the orchestration MSPL policies into
final security enabler configurations. Since the new security policies could generate conflicts or
dependencies intra and inter policies it is also required to perform a policy conflict and dependencies
detection. Once has been determined that the security policies are suitable to be deployed, there is an
orchestration process in order to enforce the security policies along the security enforcement plane. This
last process has been omitted in this section since it will be detailed in deliverable D3.5.

5.1 POLICY REFINEMENT AND TRANSLATION PROCESSES
ANASTACIA framework extends and improves the HSPL and MSPL languages proposed in SECURED-FP7
European project [6].The first results of this extension and improvements were defined in ANASTACIA
deliverable D2.1 [7]. That work was evolved up to its current status which was provided in ANASTACIA
deliverable D2.5 [8]. The present section shows the final version of the policy refinement and policy
translation processes.

5.1.1 HSPL to MSPL Refinement
In the Policy set-up activity, the security administrator is able to define orchestration security policies at
two different levels, these are, High-level Security Policy Language (HSPL) and Medium-level Security Policy
Language (MSPL) according to the level of abstraction that the administrator prefers. If the administrator
decides to model HSPL orchestration policies, he/she can do it through the policy editor UI. Figure 3 shows
the refinement process once the security administrator has defined the high-level orchestration security
policy. The process is composed by the following points:

1. The security administrator defines an orchestration HSPL policy by using the Policy Editor UI in the
Policy Editor Tool. For simplicity in the figure it is named as HSPL-OP (High-level Security Policy
Language Orchestration Policy).

2. The Policy Editor Tool requests the HSPL-OP refinement to the Policy interpreter.

Steps 3 to 12 are performed for each HSPL in the HSPL-OP.

3. The Policy Interpreter identifies the main capability that will be necessary in order to enforce the
security policy in the system.

4. The Policy Interpreter sends the main identified capabilities to the Security Enablers Provider.
5. The Security Enablers Provider request to the Security Enablers Repository those security enablers

which implement the required capabilities.
6. The repository returns the requested security enablers.
7. The Policy Interpreter receives the list of the security enablers candidates.
8. The Policy Interpreter verifies there is at least one security enabler per security policy in the policy

for orchestration able to enforce the required capability.
9. If there is not a security enabler able to enforce the required capabilities the Policy Interpreter will

notify the error.
10. Otherwise, the Policy Interpreter retrieves system model information in order to perform the policy

refinement, e.g., ip addresses, ports, protocols…

Page 20 of 35

Figure 3: H2M Process

11. The Policy Interpreter receives the system model information.
12. The Policy Interpreter generates a MSPL policy by using the system model information, also adding

the HSPL dependencies to the MSPL.
13. The Policy interpreter generates a MSPL-OP by gathering the MSPL list.
14. If there are no errors in the refinement process Policy Editor Tool receives the MSPL-OP.
15. Otherwise Policy Interpreter will notify the refinement errors.
16. HSPLOP and the correspondent MSPL-OP are uploaded to the Policy Repository in order to register

the refinement result.

Page 21 of 35

5.1.2 MSPL to Low-level Enforcement
Once an MSPL orchestration policy has been obtained, it must be translated into a set of final
configurations for specific security enablers. Figure 4 shows the process in order to translate and enforce
orchestration MSPL security policies without taking into account the conflict detection which will be
explained in next section. The process is composed by the following points:

Figure 4: M2L process

1. If the MSPL-OP is generated as part of the Policy set-up activity, it will be provided by the Policy
Editor Tool.

2. If it is generated as part of a reaction process it will be provided by the Mitigation Action Service.

Steps 3 to 8 are performed for each MSPL in the MSPL-OP.

3. If the MSPL does not contain security enabler candidates, the Security Orchestrator will request
them to the Security Enablers Provider.

4. The Security Enablers Provider provides the security enablers which could enforce the security
policy.

5. The Security Orchestrator request to the System Model the available information of the underlying
technologies for the entities involved in the security policy.

6. The Security Orchestrator receives the requested information.
7. The Security Orchestrator uses the system model information and the available security enabler

candidates to decide which one will be the best security enabler in order to enforce the security
policy.

Page 22 of 35

8. The Security Orchestrator updates the MSPL by replacing the security enabler candidates by the
selected one.

9. The Security Orchestrator requests the MSPL-OP translation to the Policy Interpreter.

Steps 10 to 13 are performed for each MSPL in the MSPL-OP.

10. Policy Interpreter requests system model information in order to perform the translations.
11. Policy Interpreter receives the system model information.
12. Policy Interpreter retrieves the specific plugin for the selected security enabler.
13. Policy Interpreter performs the policy translation by using the specific security enabler plugin.
14. Policy Interpreter upload the correspondence between the MSPL-OP and the generated

configurations.
15. Policy Interpreter returns the final configurations as well as the conflicts and dependencies to the

Security Orchestrator.

Steps 16 is performed for each MSPL in the MSPL-OP.

16. MSPL is enforced according on their priority.
17. Security Orchestrator updates the policy status into the Policy Repository.

5.2 POLICY CONFLICT AND DEPENDENCIES DETECTION PROCESS
Conflict detection and dependencies enforcement process extends the MSPL to low-level enforcement
process by adding policy conflict and dependencies analysis both inter and intra policies level.

Figure 5: Conflict detection and dependencies enforcement process

Page 23 of 35

Figure 5 starts at point 8 since points 1 to 7 are the same than in the precious case. Points 9 onward are
explained below:

9. The Policy Interpreter requests the policy conflict and dependencies detection to the Policy Conflict
Detector.

10. Policy Conflict Detector retrieves from the Policy Repository the security policies that are already
deployed in the system.

11. Policy Conflict Detector retrieves from the Event Log (log database) the events related to the
security policies.

12. Policy Conflict Detector performs the conflict and dependency detection by analysing different kind
of conflicts inter and intra security policies.

13. Policy Conflict Detector returns policy conflicts and dependencies.
14. Policy Interpreter performs the MSPL-OP translation. This point has been simplified in this figure for

simplicity.
15. Policy Interpreter returns the correspondence between MSPL-OP and configurations as well as its

conflicts and dependencies.

Steps 16 to 24 are performed for each MSPL in the MSPL-OP.

16. If the MSPL policy presents some kind of conflict and the enforcement process started as part of
the policy set-up process the Security Orchestrator notifies the issue to the Policy Editor Tool.

17. If the MSPL policy presents some kind of conflict and the enforcement process started as part of
the reaction process the Security Orchestrator notifies the issue to the Mitigation Action Service.

18. If the MSPL policy presents an unsatisfied dependency it must be queued.
19. Otherwise the MSPL is enforced according on their priority.
20. The MSPL queue is verified
21. If the queued MSPL dependencies have been satisfied it is enforced.

Once the different processes involved in the security enforcement management have been explained, netx
section provides a more detailed information regarding the implementation of the components and the
interfaces. Regarding the Security Orchestrator implementation, this document provides a brief summary
since it will be described in the deliverable D3.5.

Page 24 of 35

6 FINAL POLICY-BASED SECURITY ENFORCEMENT MANAGEMENT

IMPLEMENTATION
This section provides details about the implementation of those components involved in the policy-based
security enforcement management. They are the Policy Editor Tool, the Policy Interpreter, the Policy
Conflict and Dependencies Detector, the Security Enablers Provider and the Security Orchestrator.

6.1 POLICY EDITOR TOOL IMPLEMENTATION
In order to ease the policy set-up activity, it has been developed from scratch the Policy Editor Tool which
provides the Policy Editor UI. The Editor Tool has been developed in Django Python framework and the
service has been dockerised to boost a quick the deployment process, and increase the flexibility and
scalability. Figure 6 shows the interactions and technologies in order to allow the administrator to model
HSPL-OP.

Figure 6: Policy Editor Tool HSPL-OP Modeling

The friendly GUI has been developed as a Django web application. In this way, the administrator is able to
model HSPL-OP by filling the basic fields of high-level security policies. Figure 7 shows the HSPL-OP form.
This form allows to compose different HSPL policies in a HSPL-OP. Each HSPL policy is composed by the
action to be performed over an object for a specific subject, target, purpose and resource. The content of
these fields is retrieved dynamically from the system model according on the values selected.

Figure 7: HSPL-OP Editor UI

Page 25 of 35

New HSPL policies can be added by clicking the “+” blue button. In the same way, dependencies can be
added by opening the dependencies section. Figure 8 shows the dependencies section which allows the
administrator to introduce new dependencies by including the dependency type and the target of the
dependency.

Figure 8: HSPL-OP Editor UI dependencies

Once the administrator has built the HSPL-OP, he can send the obtained results to the Policy Editor Tool by
clicking in the “Refinement” button. This button will request the policy refinement by sending the XML
HSPL-OP file to the Policy Editor Tool, which in its turn will request the refinement process to the Policy
Interpreter. Figure 9 shows the interactions between the administrator and the Policy Editor UI and Tool
once the first has requested the HSPL-OP refinement.

Figure 9: Policy Editor Tool HSPL-OP Refinement

As it is shown in the figure, once the policy refinement has been performed the Policy Editor Tool also
requests a policy conflict detection in order to also notify possible dependencies and conflicts. In this way
the Policy Editor Tool returns a JSON file that includes not only the XML MSPL-OP refinement but also two
JSON lists with the conflicts and dependencies which has been computed by the Policy Conflict and
Dependencies Detector. If there are no conflicts and dependencies detected the Policy Editor UI will show
the refinement as successful. Figure 10 shows an example of a successful refinement process.

Figure 10: Policy Editor UI Successful Refinement

Page 26 of 35

Otherwise, the Policy Editor UI will notify to the administrator the kind of dependencies or conflicts and the
security policies that are generating this behaviour. Figure 11 shows two different pictures. The first one
corresponds to a dependencies detection whereas the second one corresponds to a conflict detection.

Figure 11: Dependency and Conflict detection

The main differences between them, apart from the colour of the notification, is that in the second case the
“Enforcement” button is disabled. This occurs due a pendency could be solved dynamically by the Security
Orchestrator at enforcement time, but the administrator must ensure that the new security policies he/she
models will not generate conflicts between them and between the ones that are already deployed in the
system.

6.2 POLICY INTERPRETER IMPLEMENTATION
Policy interpreter services have been implemented from scratch by using Falcon framework. Falcon is a
Python REST API framework which provides fast, reliable, extensible and compatible development
properties. Since we have two different levels of security policies, we have developed two different services
in order to provide the H2M policy refinement and the M2L policy translation.

6.2.1 H2MService
The service who provides the High-level to Medium-level security policies refinement is denominated
H2MService. This service has been implemented as a class inside the Falcon framework and it is able to
process POST requests to the endpoint /h2mservice. Other methods have been overridden in order to
provide an exception indicating that only POST method is allowed.

Figure 12: h2mService implementation

Figure 12 shows the main technologies involved in the implementation of the h2mservice. The python
service is dockerised in the same way of the policy editor tool in order to obtain the same benefits. Once it
receives the POST request, it verifies that the body contains the XML HSPL-OP and then it creates a
H2MRefiner object and it invokes the get_mspl method in order to perform the policy refinement. To
parser the XML HSPL-OP it has been used the pyxb tool. This tool allows to generate python classes for each
XML element defined in an XML schema which in this case corresponds with the HSPL schema defined in
the deliverable D2.5. By using this tool, the refinement module extends the behaviours of the classes
generated by pyxb in order to add refinement methods like the get_mspl one. Taking this into account the
get_mspl method in the H2MRefiner object only needs to parse the XML HSPL-OP and invoke the get_mspl

Page 27 of 35

method of the HSPL-OP object. This method generates a new random ID for the HSPL-OP in case it has not
been already provided, then it builds a skeleton of an empty MSPL-OP which also generates a random ID.
For each HSPL in the HSPL-OP it is also verified that a HSPL ID has been provided, otherwise a new one is
generated and the HSPL orchestration id is filled with the one of the HSPL-OP. Then to_mspl method
implemented in the HSPL object is invoked. This method is the one in charge to refine HSPL policies in one
or more MSPL policies depending on the implementation criteria. In current implementation some security
policies will generate two MSPL security policies to represent the bi-directional condition. Once the HSPL
refinement method is invoked it verifies that action and object defined in the HSPL policy are valid, this is,
they are previously defined in the schema. The process then retrieves system model information (e.g., ip
address, port, available channel protection) for all the high-level values involved in the HSPL policy. In order
to determine the capability, it performs a match between the action and the object against a capability
mapping, for instance, the action “authorise_access” and the object “AllTraffic” will generate a
Traffic_Divert capability. Once determined the involved capabilities, the security enablers candidates are
requested. If there are not security enabler candidates available, the process will finish at this point and a
refinement error will be generated. Otherwise, a method get_X_Y_mspl will be invoked where X
corresponds to the action and Y corresponds to the kind of object, e.g. get_authorise_access_traffic_mspl.
In this way we are able to process independently each combination of actions and objects, but we can also
to abstract common methods in order to be used for different combinations. Independently of the
combination, these kinds of methods follow a common structure. First, an empty base skeleton for the
MSPL is defined by creating the main MSPL objects (the MSPL python classes have been also generated by
using the pyxb tool), also replicating the HSPL dependencies into MSPL dependencies. Once the base MSPL
has been generated, the method performs the specific refinement by using specific data previously
retrieved from the system model, filling then the actions and conditions. For example, in order to authorise
access to some kind of traffic, the traffic divert action is set to “FORWARD” , the forward action fills fields
like destination address and interface of the HSPL traffic target and the forward condition establish as
source address and source interface those retrieved for the subject, as well as destination port and
protocol those retrieved for the object. For example, if we model that SensorA is authorized to access
authentication traffic against the authentication agent, the traffic from SensorA IP with authentication
traffic destination port and authentication traffic protocol must be redirected against the authentication
agent IP address. When the HSPL policy has been refined, the result is included in the MSPL-OP. Finally,
when the whole HSPL-OP has been translated in a MSPL-OP which contains all the refinements it is stored
in the Policy Repository and it is returned to the main method of the H2MService who returns a HTTP 200
OK which includes the resultant XML MSPL-OP.

6.2.2 M2LService
The service who provides the Medium-level to Low-level security policies translation is denominated
M2LService. This service has been implemented as a class inside the Falcon framework and it is able to
process POST requests to the endpoint /m2lservice. Other methods have been overridden in order to
provide an exception indicating that only POST method is allowed.

Figure 13: m2lservice implementation

Page 28 of 35

Figure 13 shows the main technologies involved in the implementation of the m2lservice. The python
service is dockerised in the same way of the h2mservice in order to obtain the same benefits. Once it
receives the MSPL-OP by a POST request the service requests a dependencies and conflict detection to the
conflict detection service which will be explained later (it has been omitted of the figure for simplicity).
Conflict and dependences are then stored, and the policy translation begins. In this case a MSPLTranslation
object is created and the translate method is invoked by passing as parameter the MSPL-OP. In the same
way of the refinement module, the translator module also implements a customisation of the main MSPL
schema elements in order to provide translation methods. This is, one the MSPL-OP has been loaded as
python object we can directly invoke the translate method. This method loops over each MSPL policy in the
MSPL-OP and invokes the translated method for each of them. The MSPL translate method gets the
security enabler name from the MSPL and downloads the translator plugin from the Security Enabler
Provider and stores it in the temporal m2l_plugins folder. Once the plugin has been downloaded, it is
imported dynamically to the python code as a M2LPlugin object. Each security enabler plugin implements
the M2LPlugin class which contains the get_configuration method. This method receives a MSPL policy and
returns the specific configuration for the specific security enabler who is implemented by the plugin. The
translation process is similar to the refinement one. The main MSPL element, ITResourceType, is
customised in order to extend the default behaviour of the pyxb tool in order to add the get_configuration
method. Since the same enabler could enforce different capabilities, this method identifies the capability of
the received MSPL policy, and it invokes the get_Z_configuration where Z is the capability. If the identified
capability is not implemented the process will return a non-eforzable notification. Otherwise the method is
invoked and depends on the capability the MSPL translation is addressed in different way. This is, for the
DTLS_protocol capability it is required to set as data protection action the DTLS security parameters
whereas for power management is enough to specify the power management action. This different
behaviour depending on the capability is implemented by adding and customising the get_configuration
method for each element involved in the capability (capability, actions and conditions). Finally, when each
MSPL has been translated, the result is provided in JSON format.

{

 {

 "translations": {

 "omspl_translation": {

 "mspl_id": "mspl_9f1a88b4fc67421b98de270d5a63d35f",

 "mspl": "<ITResourceOrchestration>…</ITResourceOrchestration>”,

 "mspl_translations": [{

 "mspl_id": "mspl_9f1a88b4fc67421b98de270d5a63d35a",

 "mspl": "<ITResource>…</ITResource >”,

 "enabler": "onos_nb",

 "enabler_conf": "{\"priority\": 60000,\"tableId\": 0,…}”,

 }, {

 . . .

 }],

 }

 }

}

Figure 14: m2lservice output example

Figure 14 shows an example of output for the m2lservice. As it is shown, the result is composed by the
MSPL-OP ID and its plain text as well as the ID, plain text, enabler and enabler configuration for each MSPL
part of the MSPL-OP.

6.3 POLICY CONFLICTS AND DEPENDENCIES DETECTOR IMPLEMENTATION
The service who provides the Medium-level conflict and dependencies detection is denominated
MCDTService. This service has been implemented as a class inside the Falcon framework and it is able to
process POST requests to the endpoint /mcdtservice. Other methods have been overridden in order to
provide an exception indicating that only POST method is allowed.

Page 29 of 35

Figure 15: mcdtservice implementation

Figure 15 shows the main technologies involved in the implementation of the mcdtservice. The python
service is dockerised in the same way of the m2lservice in order to obtain the same benefits. Once it
receives the MSPL-OP by the POST method the MSPL-OP is loaded into a python object in the same way as
the previous services, then a MSPLConflictDetector object which implements the detect method. This
method receives a MSPL-OP object and uses it as source of the rule engine. As rule engine it is used Pyke.
Pyke introduces a form of logic programming inspired in Prolog to the Python community by providing a
knowledge-based inference engine.

verify_same_filtering_l4_behaviour

 foreach

 mspls.mspl($mspl1, $status1)

 mspls.mspl($mspl2, $status2)

 check $mspl1.id != $mspl2.id

 check $mspl1.configuration.capability.Name ==

 $mspl2.configuration.capability.Name == "Filtering_L4"

 check $mspl1.configuration.configurationRule.configurationRuleAction.FilteringActionType ==

 $mspl2.configuration.configurationRule.configurationRuleAction.FilteringActionType

 check

$mspl1.configuration.configurationRule.configurationCondition.packetFilterCondition.SourceAddress

 ==

$mspl2.configuration.configurationRule.configurationCondition.packetFilterCondition.SourceAddress

 check

$mspl1.configuration.configurationRule.configurationCondition.packetFilterCondition.DestinationAd

dress

 ==

$mspl2.configuration.configurationRule.configurationCondition.packetFilterCondition.DestinationAd

dress

 check

$mspl1.configuration.configurationRule.configurationCondition.packetFilterCondition.SourcePort ==

$mspl2.configuration.configurationRule.configurationCondition.packetFilterCondition.SourcePort

 check

$mspl1.configuration.configurationRule.configurationCondition.packetFilterCondition.DestinationPo

rt

 ==

$mspl2.configuration.configurationRule.configurationCondition.packetFilterCondition.DestinationPo

rt

 check

$mspl1.configuration.configurationRule.configurationCondition.packetFilterCondition.Interface ==

$mspl2.configuration.configurationRule.configurationCondition.packetFilterCondition.Interface

 check

$mspl1.configuration.configurationRule.configurationCondition.packetFilterCondition.ProtocolType

==

$mspl2.configuration.configurationRule.configurationCondition.packetFilterCondition.ProtocolType

assert

 mspls.mspl_conflict($mspl1,same_behaviour_filtering_l4_conflict,$mspl2)}

Figure 16: MSPL Pyke rule example

Page 30 of 35

Figure 16 shows an example of rule engine in order to detect if two MSPL policies shares the same kind of
behaviour for the Filtering_L4 capability. Currently the knowledge rule base is composed by the following
examples:

• Redundancy ID conflicts

• Redundancy conflict by behaviour (Filtering L4 example)

• Contradiction or Managers conflict (Filtering L4 and Traffic divert examples)

• Conflict of duties (DTLS and Traffic inspection example)

• Conflict of priority

• Override behaviour conflict

• Dependencies (policy and event examples)

 These kinds of rules are previously compiled for the Pyke rule engine which generates python code. In this
way, when the service receives the MSPL-OP object, it initializes the engine and it retrieves the current
MSPL policies that have been already enforced in the system, then it establishes these security policies as
the base of knowledge. Finally, it loops over the MSPL-OP and inserts as new MSPL fact each MSPLs
contained in the MSPL-OP. When a conflict or dependency is detected it is asserted as new fact in the
mspl_conflict or mspl_dependencies knowledge respectively. This knowledge is the one returned in JSON
format.

{

 "mspl_conflicts": [

 ["mspl_9f1a88b4fc67421b98de270d5a63d36b", "priority_dependency_conflict",

 "mspl_9f1a88b4fc67421b98de270d5a63d36a"]

],

 "mspl_dependencies": [

 ["mspl_9f1a88b4fc67421b98de270d5a63d36b", "policy_dependency",

 "mspl_9f1a88b4fc67421b98de270d5a63d36a"]

]

}

Figure 17: mcdtservice output example

Figure 17 shows an example of conflict and dependency detection. The JSON provides a list of three
element tuples composed by the ID of the first MSPL involved in the issue, the kind of conflict or
dependency and the ID of the second MSPL involved.

6.4 SECURITY ORCHESTRATOR IMPLEMENTATION

This section has been extracted from deliverable D3.1 just with the aim to summarise the implementation
concepts of the security orchestration since the details will be explained in the deliverable D3.5.
The security orchestrator is responsible for providing on-demand security policy enforcement on the IoT
domain. This task is performed by taking in charge the transformation of the relevant security policies
provided by the security policy interpreter into specific enabler configuration. It also monitors and
supervises the underlying infrastructure for any potential flaws.

Page 31 of 35

Figure 18: Security Orchestrator Implementation Architecture

To this aim, the security orchestrator interacts with three key components:

• The IoT controller: Used to enforce IoT-specific mitigation actions, such as IoT devices access
control, authentication and power on/off. This interaction is done through Rest-API to send queries
to the IoT controller depending on the security policy provided by the MSPL file.

• The NFV MANO: An ETSI-defined framework designed for managing and orchestrating resources in
the cloud. It is used by the security orchestrator to create and configure a wide range of security
enablers. It has three main functioning blocks:

o NFV Orchestrator: Manages the registration of Network Services (NS) and Virtual Network
Function (VNF) packages, lifecycle of different network services and the resources
allocation requests.

o VNF Manager: Configures and monitors each VNF after its instantiation.
o Virtualized Infrastructure Manager (VIM): Interacts with the compute, network and storage

resources (clouds) in order to provision relevant VNFs.

• The SDN controller: is accountable for managing network resources and enabling the
programmability of the underlying network. The SDN orchestration is done through the ONOS
driver. This driver has been developed in order to automate the SDN management using one or
multiple ONOS SDN controllers. It controls multiple Open Virtual Switches (OVS) in order to enable
the following functionalities:

o Traffic forwarding (steering) to VNFs.
o Traffic mirroring to different VNFs.
o Traffic dropping.
o Bandwidth limitation.

The combined usage of these components enables the security orchestrator to enforce the relevant
security policies either through direct actions such as: traffic dropping and IoT devices power on/off, or
more complex actions when it comes to VNFs:

• Provisioning: Creating the appropriate VNF on a chosen VIM (According to the VNF application
graph) such as: Intrusion Detection Systems (IDS) and Firewalls…

Page 32 of 35

• VNF Configuration: Using the MSPL to low level translation, the security orchestrator pushes the
specific configuration of each VNF (IDS rules, Firewall configuration...)

• Networking Setup: Injecting the relevant SDN flow rules to manage the traffic to be analysed, for
example: mirroring the traffic to a monitoring agent or steering the traffic through a firewall.

6.5 SECURITY ENABLERS PROVIDER IMPLEMENTATION

The security enabler provider has been implemented in python from scratch and it provides two main
functionalities, these are, to provide a list of available security which are able to enforce the capability or
capabilities received as parameter and to provide the specific plugin which implements the translation from
the MSPL policy to the specific configuration of the security enabler. The implementation details of this
module have been omitted in this document since they are properly explained in the section 6 of the
deliverable D3.6.

Page 33 of 35

7 CONCLUSIONS

This document provides the final report about the policy refinement, translation and conflict and
dependencies detection processes being devised and implemented in WP3, and concretely in Task 3.1. In
this regard, the document has described the Policy Interpreter component, the policy editor tool as well as
the security enablers provider of the Anastacia framework, as main components in charge of performing
those tasks. The report delves into the state of art regarding the policy refinement techniques, technologies
as well as policy-based frameworks and conflict detection approaches. The document defines the
relationships and interfaces between the policy interpreter and the rest of components. Besides, it has
been detailed the policy refinement process from high-level security policy language to the medium-level
security policy language, as well as the translation process from the medium-level security policy language
to the specific security enabler configurations, also including policy conflict and dependencies detection
processes.

Once it has been illustrated at design level, it has been provided an explanation regarding the current
implementation and integration of the main components and services involved on the policy enforcement,
that is, the Policy Editor Tool, the Policy Interpreter, the Security Orchestrator and the Security Enabler
Provider.

Page 34 of 35

8 REFERENCES

[1] Common Information Model (CIM), DMTF Standard.

[2] Jorge Bernal Bernabe, Juan M. Marin Perez, Jose M. Alcaraz Calero, Jesus D. Jimenez Re, Felix J.

Garcia Clemente, Gregorio Martinez Perez, Antonio F. Gomez Skarmeta, “Security Policy

Specification”, Network and Traffic Engineering in Emerging Distributed Computing Applications,

IGI Global, pp. 66-93, 2012.

[3] Policy-Based Security Tools and Framework (POSITIF), EU project, FP6, IST-2002-002314

[4] Dependable Security by Enhanced Reconfigurability (DESEREC), IST-2004-026600, EU project,

Framework Programme 6

[5] SECURED EU FP7 project, deliverable D4.1: Policy specification.

[6] SECURED EU FP7 project, deliverable D4.2: Policy transformation and optimization techniques.

[7] ANASTACIA D2.1: Policy-based definition and policy for orchestration – Initial report

[8] ANASTACIA D2.5: Policy-based definition and policy for orchestration – Final report

[9] Simplifying Network Administration Using Policy-Based Management, Dinesh C. Verma, IBM

Thomas J Watson Research Center

[10] Management and Translation of Filtering Security Policies, Ehab S. Al-Shaer and Hazem H. Hamed

Multimedia Networking Research Laboratory School of Computer Science, Telecommunications

and Information Systems DePaul University, Chicago, USA

[11] Ontology-based Security Policy Translation, Cataldo Basile, Antonio Lioy, Salvatore Scozzi, and

Marco Vallini, Politecnico di Torino.

[12] IPSec/VPN Security Policy: Correctness, Conflict Detection and Resolution, Zhi Fu, S. Felix Wu

Computer Science Department, North Carolina State University. He Huang, Kung Loh Nortel

Networks. Fengmin Gong, Ilia Baldine, Chong Xu Advance Networking Research MCNC

[13] Policy Conflict Analysis in Distributed System Management, Jonathan D. Moffett, Department of

Computer Science University of York, UK. Morris S. Sloman Department of Computing Imperial

College of Science Technology and Medicine University of London, UK.

[14] Detection of semantic conflicts in ontology and rule-based information systems, Jose M. Alcaraz

Calero, Juan M. Marín Pérez, Jorge Bernal Bernabé, Felix J. Garcia Clemente, Gregorio Martínez

Pérez, Antonio F. Gómez Skarmeta.

[15] Diego Lopez et al. I2NSF Framework for Interface to Network Security Functions. RFC 8329, IETF.

Feb 2017. I2NSF Working Group

[16] L. Xia et al. Information Model of NSFs Capabilities. Internet-Draft, IETF. December 2017.

Page 35 of 35

[17] I. Farris et al., "Towards provisioning of SDN/NFV-based security enablers for integrated protection

of IoT systems," 2017 IEEE Conference on Standards for Communications and Networking (CSCN),

Helsinki, 2017, pp. 169-174.doi: 10.1109/CSCN.2017.8088617

[18] S. Ziegler, A. Skarmeta, J. Bernal, E. E. Kim and S. Bianchi, "ANASTACIA: Advanced networked

agents for security and trust assessment in CPS IoT architectures," 2017 Global Internet of Things

Summit (GIoTS), Geneva, 2017, pp. 1-6.doi: 10.1109/GIOTS.2017.8016285

[19] Molina Zarca, A., Bernal Bernabe, J., Farris, I., Khettab, Y., Taleb, T., & Skarmeta, A. (2018).

Enhancing IoT security through network softwarization and virtual security appliances.

International Journal of Network Management, e2038. doi:10.1002/nem.2038

[20] Molina Zarca, A., Garcia-Carrillo, D., Bernal Bernabe, J., Ortiz, J., Marin-Perez, R., & Skarmeta, A.

(2019). Enabling Virtual AAA Management in SDN-Based IoT Networks †. Sensors, 19(2), 295.

doi:10.3390/s19020295

