

ANASTACIA has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement N° 731558

and from the Swiss State Secretariat for Education, Research and Innovation.

This document only reflects the ANASTACIA Consortium’s view.
The European Commission is not responsible for any use that may be made of the information it contains.

D3.3
Initial Security Enforcement
Enablers Report
This deliverable presents the first results of ANASTACIA Task 3.3, which
aims to manage the first stage of Security Enforcement Enablers
requirements established in high-level terms through the ANASTACIA
architectural components and their integration.

Distribution level PU

Contractual date 31.07.2018 [M19]

Delivery date 06.08.2018 [M20]

WP / Task WP3 / T3.3

WP Leader THALES SIX GTS France

Authors D. Belabed, M. Bouet (THALES SIX GTS FRANCE);

D. Rivera (Montimage) ; P. Sobonski (UTRC);
A. Molina Zarca (UMU)

EC Project Officer Carmen Ifrim carmen.ifrim@ec.europa.eu

Project Coordinator Softeco Sismat SpA
Stefano Bianchi
Via De Marini 1, 16149 Genova – Italy
+39 0106026368
stefano.bianchi@softeco.it

Project website www.anastacia-h2020.eu

mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/

Page 1 of 31

Table of Contents

Public summary ... 4

1 Introduction ... 5

1.1 Aims of the document ... 5

1.2 Applicable and reference documents ... 5

1.3 Revision History ... 6

1.4 Acronyms and Definitions ... 7

2 Security Enforcement Enablers in the ANASTACIA Architecture .. 8

2.1 Security Enabler Provider module ... 8

2.2 Security Resource Planning module .. 9

3 Refinement Security Enforcement Enablers ... 11

3.1 Security Enabler Provider Interactions .. 11

3.1.1 Interactions with Policy Interpreter for refining security policies ... 11

3.1.2 Interactions with the Security Orchestrator .. 13

3.2 Security Resource Planning module Interactions .. 13

3.2.1 Interactions with the Security Orchestrator .. 13

4 First Security Enforcement Enablers Implementation .. 15

4.1 Security Enabler Provider .. 15

4.1.1 List of the security enablers ... 15

4.1.2 Security Enabler ... 16

4.2 Security Resource Planning module .. 17

4.2.1 Problem statement .. 17

4.2.2 Mathematical formulation .. 18

5 Use cases description for the Security Enforcement Enablers .. 19

5.1 BMS.2: Insider attack on the fire suppression system .. 19

5.2 MEC.3: DoS/DDoS attacks using smart cameras and IoT devices ... 22

5.3 BMS.3: Remote attack on the building energy microgrid .. 23

5.4 BMS.4: Cascade attack on a megatall building .. 24

6 Conclusions .. 25

7 References ... 26

8 Attachments .. 27

8.1 Example of SNORT Plugin .. 27

8.2 Example of Security Enabler for BMS.4 use case .. 31

Page 2 of 31

Index of figures

Figure 1: Security Enabler Candidates (Interactions with Policy Interpreter) ... 11

Figure 2: Security Enabler Plugin (Interactions with Policy Interpreter) ... 12

Figure 3: Security Enabler Candidates (Interactions with the Security Orchestrator) 13

Figure 5: Security Resource Planning Module Interactions with the Security Orchestrator 14

Figure 6: Security Enforcement Enablers Implementation ... 15

Figure 7: Security Enabler Provider (list of the security enabler requests) ... 16

Figure 8: Security Enabler API.. 17

Figure 9: Mathematical notations ... 18

Figure 10: IoT-Honeynet policy deployment ... 19

Figure 11: Cooja configuration example ... 21

Figure 12: Cooja deployment .. 21

Figure 13 : Use case MEC.3: DOS/DDOS attacks using smart camera and IoT devices 22

Page 3 of 31

Index of tables

Table 1: Security Enabler Provider description ... 8

Table 2. Interpreter -> Security Enabler Provider Security Enabler (SEPSEI) .. 8

Table 3. Interpreter -> Security Enabler Provider (SEPPI) ... 9

Page 4 of 31

PUBLIC SUMMARY
Task 3.3 is about the Security Enforcement manager, which is a component of the Security Orchestrator plan
in the ANASTACIA architecture [1].

In this deliverable, we present the first results of “Initial Security Enforcement Enablers”, which tackles the
Task 3.3 within WP3.

More precisely, this deliverable focuses on the development of the core enablers for the deployment of the
security enforcement manager.

Page 5 of 31

1 INTRODUCTION
This section will introduce this document by enumerating its aims, references, revision history and the
different acronyms which were used.

1.1 AIMS OF THE DOCUMENT

This document is the third WP3 report. This “Initial Security Enforcement Enablers” report focuses on the
development of core enablers for the deployment and implementation phase of the security enforcement
manager. More precisely, this deliverable tackles the Task 3.3 within WP3. This task is about the Security
Enforcement manager, which is a component of the Security Orchestrator plan in the ANASTACIA
architecture [1].

During the first period, a first definition of "Security Enablers Manager" was done at the early stage of the
project, where the focus was about differencing the goals of the Security Enforcement Enablers regarding of
the security orchestrator goals. Thus, the term "Security Enablers Manager" was changed to “Security
Enablers Provider” to avoid any confusion where module's features are confirmed and published in the
deliverable of Anastacia architecture D1.3 [1]. Besides; the module will provide the list of available security
enablers, according to the security capabilities, and relevant plugins for the refinement of MSPL security in
low-data configuration. Moreover, the definition of the strategies related to the security enablers selection
will be done in the Security Orchestrator module and will be driven by T3.3. To this aim, a specific
subcomponent in the Security Orchestrator has been introduced called “Security Resource Planning”.

Now, the definition of the Task 3.3 is stable, relevant plugins for the refinement of MSPL security in low-data
configuration were defined. The definition of the subcomponent in the Security Orchestrator introduced was
defined. The definition of the algorithms that will be used by the Security Orchestrator subcomponent was
defined. Finally, a first version of the Security Enabler Provider and the Security Resource Planning was
developed and shared with the Anastacia partners.

This document is structured as follow:

• Section 2 provides an overview of the Anastacia architecture, contextualizing the Security
Enforcement Enablers in the ANASTACIA framework.

• Section 3 defines the refinement of the Security Enforcement Enablers components and its
interaction with the other Anastacia components,

• Section 4, describes the first implementation of the Security Enforcement Enablers components.

• Section 5 gives a description of the role of the Security Enforcement Enablers components for each
use case defined in the deliverable D6.2.

• Finally, section 6 concludes this deliverable.

1.2 APPLICABLE AND REFERENCE DOCUMENTS

This document refers to the following documents:

• ANASTACIA project deliverable D1.3 – Initial Architecture Design.

• ANASTACIA Grant Agreement N°731558 – Annex I (Part A) – Description of Action.

• ANASTACIA deliverable D3.1 – Initial Security Enforcement Manager Report.

• ANASTACIA deliverable D3.2 – Privacy Risk Modelling and Contingency – Initial Report.

• Anastacia deliverable D6.2 – Initial use cases implementation and tests Report.

Page 6 of 31

1.3 REVISION HISTORY

Version Date Author Description

0.1 17.05.2018 Dallal Belabed
(TCS)

Table of contents

0.2 06.06.2018 Dallal Belabed
(TCS)

Diego Rivera
(Montimage)

MEC.3 and BMS.2 use cases description regarding the
security enforcement enablers

0.3 11.06.2018 Piotr Sobonski
(UTRC)

BMS.4 use case description content

0.4 12.06.2018 Alejandro Molina
Zarca (UMU)

Interactions with Policy Interpreter

0.5 20.06.2018 Dallal Belabed
(TCS)

Mathieu Bouet
(TCS)

Security Enforcement Enablers in the ANASTACIA
Architecture description and Integration of the
contributions of the different partners.

0.6 15.07.2018 Dallal Belabed
(TCS)

Mathieu Bouet
(TCS)

Revision of Security Resource Planning Module and
Integration of the First Security Enforcement Enablers
Implementation

0.7 19.07.2018 Dallal Belabed
(TCS)

Mathieu Bouet
(TCS)

Initial full draft of deliverable

0.8 27.07.2018 Dallal Belabed
(TCS)

Internal revision of the document

0.9 31.07.2018 Alejandro Molina
Zarca(UMU),

Piotr Sobonski
(UTRC)

Revised version

1.0 31.07.2018 Dallal Belabed
(TCS)

Final version released, ready to be delivered

Page 7 of 31

1.4 ACRONYMS AND DEFINITIONS

Acronym Meaning

MSPL Medium-level Security Policy Language

HSPL High-level Security Policy Language

IoT Internet of Things

MANO Management and Orchestration

NFV Network Function Virtualization

SDN Software Defined Networking

MEC Mobile Edge Computing

M2L Medium to Low

OVS Open Virtual Switch

SO Security Orchestrator

DPI Deep Packet Inspection

IDS Intrusion Detection System

SEP

DDoS

Security Enforcement Plane

Distributed Denial of Service attack

Page 8 of 31

2 SECURITY ENFORCEMENT ENABLERS IN THE ANASTACIA

ARCHITECTURE

2.1 SECURITY ENABLER PROVIDER MODULE

The Security Enabler Provider is a component of the Security Orchestration Plane, as defined in the Anastacia
architecture. This component is able to identify the security enablers which can provide specific security
capabilities, to meet the security policies requirements. Moreover, when the Security Resource Planning, a
sub-component of the security orchestrator, defined here after, selects the security enabler, the Security
Enabler Provider is also responsible for providing the corresponding plugin.

The following tables describe the Security Enabler Provider and their interfaces:

Table 1: Security Enabler Provider description

Security Enablers Provider

Function

The Security Enabler Provider is able to identify the list of security enablers which can
provide the specific security capabilities to meet the security policies requirements.
Besides, this component will be endowed with an interface for delivering security
M2Lplugins (Medium2Lower), which, in turn, will allow translating policies from MSPL
to Low-level configurations.

Subcomponent (Not applicable)

Sources Security Policy Interpreter / Security orchestrator

Consumers Security Policy Interpreter / Security orchestrator

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

Available
assets

A first implementation of this component with different Security M2Lplugins
(Medium2Lower), that allows translating from policies specified in MSPL to low level
configuration, have already be implemented and integrated.

Interfaces focused on the security enablers management for policy refinement and policy translation are:

• SEPSEI (Table 2. Interpreter -> Security Enabler Provider Security Enabler (SEPSEI))

• SEPPI (

• Table 3. Interpreter -> Security Enabler Provider (SEPPI))

Table 2. Interpreter -> Security Enabler Provider Security Enabler (SEPSEI)

Security Enabler Provider Security Enabler Interface (SEPSEI)

Description The interface allows requesting the required security enablers for specific capabilities.

Security Enabler Provider

Page 9 of 31

Component
providing the
interface

Input Data List of capabilities

Output Data List of candidate security enablers

Consumer
components

Policy Interpreter, Security Orchestrator

Pre-conditions There must be a correspondence between capabilities and security enablers.

Post-conditions (Not applicable)

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

Table 3. Interpreter -> Security Enabler Provider (SEPPI)

Security Enabler Provider Plugin Interface (SEPPI)

Description
The interface allows requesting the plugin that translates the MSPL file to low-level
configuration.

Component
providing the
interface

Security Enabler Provider

Input Data Enabler name

Output Data Enabler translator plugin

Consumer
components

Policy Interpreter

Pre-conditions
There must be a correspondence between the security control name and the code
location in the Security Enabler Provider.

Post-conditions (Not applicable)

ANASTACIA
activities
involved

Security Policy Set-up

Security Orchestration

2.2 SECURITY RESOURCE PLANNING MODULE

The security resource planning uses the list of the selected enablers returned to the security orchestrator by
the Security Enabler Provider to decide the more adequate enabler(s) among the list to be used to enforce
the security. This selection is done through an Integer Linear Programming (ILP) model. The aim of the model
is to select the best service (Virtual Network Function (VNF)) among the list of enablers selected previously
by the selected Security Enabler Provider, in order cope with a security attack and that minimize the
maximum load nodes (CPU, RAM, bandwidth) of the topology, provided by the system model. Indeed, the
system information will provide relevant data about the whole infrastructure, server capacity (CPU, RAM,

Page 10 of 31

etc), and VNF flavours (CPU, RAM, etc). On the other hand, the Security Enablers information will provide the
data regarding the available Security Enablers capable to enforce specific capabilities.

The different VNFs are considered as a set of enablers, each enabler is characterized by its type and its
resources. The security resource planning requests from the system model all the capacity information
regarding the infrastructure and the VNFs Flavours. The set of topology nodes is also characterized by its type
and its resources. The goal of the model is minimizing the maximum load nodes to improve provider cost
revenue (provider energy efficiency goal). Furthermore, we assume that:

· Multiple services (VNFs) can be allocated on the same node,

· A VNF service cannot be split on multiple nodes.

· Each node can host multiple services.

The security Resource Planning Module is implemented as an autonomous plugin that receives a list of the
enablers and the topology information from the System Model, based on that information we run the ILP
implemented using IBM CPLEX Optimizer engine that gives the selected security enablers that cope with the
security attack and the nodes where this security enablers have to be installed.

Page 11 of 31

3 REFINEMENT SECURITY ENFORCEMENT ENABLERS

3.1 SECURITY ENABLER PROVIDER INTERACTIONS

3.1.1 Interactions with Policy Interpreter for refining security policies

This section shows the main interactions for a policy-based deployment between the Policy Interpreter and
the Security Enabler Provider. Specifically, two different interactions have been contemplated. The first one
will provide to the Policy Interpreter a list of security enabler candidates from the main identified capabilities.
The second one will provide to the Policy Interpreter the specific Security Enabler Plugin in order to perform
the policy translation. This policy translation process was defined in Anastacia D3.1 [5], and also published in
journal paper [1] (formerly introduced in conference paper [4]).

 List of Security Enabler candidates

In Figure 1, the main interactions among the Policy Interpreter and the Security Enabler Provider are shown.
In particular, a list of Security Enabler candidates retrieval process is shown, which will be needed to enforce
the identified capabilities.

Figure 1: Security Enabler Candidates (Interactions with Policy Interpreter)

The process is compounded by the following steps:

1. Once the Policy Interpreter has received the High-level Security Policy, it identifies the required
capabilities, which in turn will be needed by the system in order to enforce the security policy.

2. The Policy Interpreter requests a list containing the Security Enablers that are able to implement the
identified capabilities.

3. The Security Enabler Provider performs a matching among the received capabilities and the existent
Security Enablers (e.g. For filtering capability, it could return a SDN controller enabler, or a vFirewall
enabler).

4. The Policy Interpreter receives the list of Security Enabler candidates. If the list contains at least one
Security Enabler, the process can continue.

5. The Policy Interpreter performs the policy refinement process.

Page 12 of 31

 Get the Security Enabler Plugin

In Errore. L'origine riferimento non è stata trovata. the main interactions among the Policy Interpreter and
the Security Enabler Provider can be observed, where the specific Security Enabler Plugin is retrieved
containing the implementation regarding how the Medium-Level Security Policy must be translated into
specific Security Enabler configuration.

Figure 2: Security Enabler Plugin (Interactions with Policy Interpreter)

The process is compounded by the following steps:

1. The Policy Interpreter requests the specific Security Enabler Plugin to the Security Enabler Provider,
indicating a plugin identifier.

2. The Security Enabler Provider obtains the plugin package for the specific plugin identifier.
3. The Policy Interpreter receives the plugin package.
4. The Policy Interpreter executes the plugin in order to translate the MSPL policy in low-level specific

configuration for the specified Security Enabler.

Page 13 of 31

3.1.2 Interactions with the Security Orchestrator

 List of Security Enabler candidates

The main interactions between the Security Orchestrator and the Security Enabler Provider are shown. In
particular, a list of Security Enabler candidates retrieval process is shown, which will be needed to enforce
the identified capabilities Errore. L'origine riferimento non è stata trovata..

Figure 3: Security Enabler Candidates (Interactions with the Security Orchestrator)

The aforementioned process is compounded by the following steps:

1. The Security Orchestrator requests from the Security Enabler Provider the list of Security Enablers
candidates for a security capability.

2. The list of Security Enablers candidates is provided to the Security Orchestrator.
3. The list of Security Enablers candidates is provided to the Security Resource Planning.
4. The Security Resource Planning gives to the Security Orchestrator the selected enabler and the

selected node.
5. The Policy Interpreter performs the policy translation.
6. The Policy Interpreter requests the plugin for the selected enabler.
7. The Security Enabler Provider gives the accurate Plugin
8. The Policy Interpreter sends the selected enabler configuration to the Security Orchestrator.

3.2 SECURITY RESOURCE PLANNING MODULE INTERACTIONS

The security Resource planning is a component of the security orchestrator and it only interacts with the
Security orchestrator.

3.2.1 Interactions with the Security Orchestrator

This section shows the main interactions between the Security Resource Planning and the Security
Orchestrator. In this case the workflow starts once the Security Orchestrator receives the list of the enabler
candidates from the Security Enabler Provider. The list is sent to the Security Resource Planning, which makes
the decision regarding which one will be the best Security Enabler able to enforce the Medium-level Security

Page 14 of 31

Policy. The selected enabler will be sent to the Security Orchestrator, which will be sent to the Policy
Interpreter and then to the Security Enabler Provider to get the specific Security Enabler configuration for
the selected Security Enabler through the Policy Interpreter.

Figure 4: Security Resource Planning Module Interactions with the Security Orchestrator

 The aforementioned process is compounded by the following steps, Figure 4:

1. The Security Orchestrator requests from the Security Enabler Provider the list of Security Enablers
candidates for a security capability.

2. The list of Security Enablers candidates is provided to the Security Orchestrator.
3. The Security Orchestrator provides to the Security Resource Planning the list of Security Enabler

candidates provided by the Security Enabler Provider.
4. The Security Resource Planning requests the system model to get the VNF flavours and the

infrastructure information.
5. The Security Resource Planning uses the list of Security Enabler candidates and the information given

by the system model, in order to decide what kind of Security Enabler should be used to enforce the
MSPL policy.

6. The Security Resource Planning gives to the Security Orchestrator the selected enabler and the
selected node.

Page 15 of 31

4 FIRST SECURITY ENFORCEMENT ENABLERS IMPLEMENTATION

4.1 SECURITY ENABLER PROVIDER

The Security Enabler provider has two main roles; it provides the list of the available enablers and it provides
a plugin that translates the policies from MSPL to Low-level configurations. The first role is implemented as
a piece of software that from specific capabilities given as an input it will provide the more accurate enablers.
The second role is also implemented as piece of software capable to translate MSPL policies into specific
configuration/tasks rules according to a concrete security enabler. The Figure 5 shows an example of Security
Enforcement Enablers functionalities.

Figure 5: Security Enforcement Enablers Implementation

4.1.1 List of the security enablers

The plugin implementation that provides the list of the available enablers is done as follows. When, the
security enabler provider received the list of capabilities, it must ask the Enabler repository and parse an XML
file that contains the list of the available enablers. Each enabler that matches with the capabilities is added
to the list. Finally, the list is returned to the security orchestrator, where the security resource planning will
use it to decide the more adequate enabler(s) among the list to be used to enforce the security.

The Figure 5 shows an example of the security enabler provider, under a security attack, the reaction
component has chosen as a mitigation strategy the filtering capability, Figure 5 (1). This capability will be
sent to the security enabler provider “getEnablerList(Filtering)”, Figure 5 (3). The security enabler provider
will ask the Enabler repository to get the list of available enablers as “snort, iptables, firewall ….”. The
previous list will be used by the security resource planning, and based on the information given by
“getSysInformation()” step , to make the proper enabler selection.

We have implemented this functionality using python language and we have implemented an API for
requesting the list of enablers, the Figure 6: Security Enabler Provider (list of the security enabler requests)
shows the API. The plugins are being implemented from scratch in python in ANASTACIA. The plugin consists
on a piece of software. The main goal of this plugin approach is to provide a plugin repository where each
security capability is linked with the list of the available enablers.

Page 16 of 31

Figure 6: Security Enabler Provider (list of the security enabler requests)

4.1.2 Security Enabler

When the security resource planning selects the enabler, the orchestrator will send the selected enabler
identification with an MSPL file that encloses the appropriate configuration. In the example the chosen
enabler is “Snort” Figure 5: Security Enforcement Enablers Implementation (4). When the security enabler
provider receives the request, it will provide the specific plugin for the selected security enabler, Figure 5:
Security Enforcement Enablers Implementation (5), and, after the policy interpreter has performed the
translation using the plugin, the orchestrator will receive the final configuration that will be enforced by
launching/configuring the enabler, Figure 5: Security Enforcement Enablers Implementation (6).

Regarding the security enabler plugins, the implementation inherits and extends the concept from the
SECURED project. Nonetheless, the plugins are being implemented from scratch in python in ANASTACIA to
comply with the new requirements, new kind of technologies and enablers, and to be able to cope with our
new MSPL policies. The plugin consists on a piece of software which will define well-known callable methods
which will take in charge to perform the translation among the MSPL policy and the specific configuration or
task. The main goal of this plugin approach is to provide a plugin repository where the developers can
contribute with their own plugins and solutions. Actually, it is envisaged the same policy could be enforced
using different plugins. For instance, the same filtering policy can be enforced through SDN using different
plugins for each SDN controllers, or by using a virtual router by configuring IPTABLES as firewall. Inside of
ANASTACIA scope, most of the following plugins have been already developed in order to be able to enforce
the main identified security policies, an example of the snort plugin is given in 8.1:

1. SDN ONOS Plugin: It will take in charge the MSPL policy translation onto a set of rules understandable
by the ONOS controller.

2. SDN ODL Plugin: It will take in charge the MSPL policy translation onto a set of rules understandable
by the OpenDayLight controller.

3. IPTABLES Plugin: It will be able to translate the MSPL policy onto iptables rules.
4. OpenWRT Plugin: It will be in charge to generate OpenWRT router configuration from an MSPL

policy.
5. Quagga Plugin: It will be in charge to generate Quagga router configuration from an MSPL policy.
6. Open Virtual Switch Plugin: It will generate OVS rules according to the specified policy.
7. PfSense Plugin: It will take in charge to generate the PfSense firewall configuration.
8. SNORT Plugin: It will translate the MSPL policy onto a SNORT monitoring rules.
9. DTLS/TLS Proxy Plugin: It will obtain the proxy configuration for DTLS/TLS secure connections.
10. VPN Plugin: It will generate the OpenVPN configuration from the secure policies parameters.
11. Kippo Plugin: It will perform the translation from MSPL to Kippo honeypot.
12. Cooja Plugin: It will translate the physical IoT system model provided to a Cooja virtual one.

Page 17 of 31

13. vAAA XACML Plugin: It will generate the required configuration for the AAA infrastructure from the
MSPL policy.

14. Data Aggregator Proxy Plugin: It will translate the security policy to a configuration of a data
aggregator proxy in order to provide pseudonimity.

15. IoT Control Plugin: This plugin will be in charge of translating the operational IoT security policies to
the specific IoT Controller rules.

Moreover, an as the module has been developed as an independent software an API was implement an
example of the API is shown in Figure 7.

Figure 7: Security Enabler API

4.2 SECURITY RESOURCE PLANNING MODULE

We provide in the following a definition of the Security Resource Planning module enabled by SDN and NFV
paradigms. Our model studies the service placement, where each service represents a VNF that will cope
with a security attack. The aim of our model is to select the best service (VNF) among the VNF catalogue that
cope with a security attack and that minimize the maximum load nodes (CPU, RAM, bandwidth) of the
topology.

4.2.1 Problem statement

The different VNFs are considered as a set service S of a type t characterized by its resources R. The set of
topology nodes is N, each node n is characterized by its type t characterized by its resources R.

• The goal of our model is minimizing the maximum load nodes to improve provider cost revenue
(provider energy efficiency goal).

Subject to:

• Node integrity and capacity constraints.

Furthermore, we assume that:

• Multiple services (VNFs) can be allocated on the same node, but a service (VNF) cannot split on
multiple nodes.

• Each node can host multiple services.

Page 18 of 31

4.2.2 Mathematical formulation

Figure 8: Mathematical notations

The Figure 8 reports the mathematical notations used in the following Mixed Integer Linear Programming
(MILP) formulation of the problem.

The goal of our model is to minimize the maximum latency and the number of active nodes. Constrained by
a set of the integrity constraints, which ensures that at least one service s has been selected, that if a service
s of type t is assigned to node n of type t, then the service s has to be assigned to only one node and the
selected node has to be of service t.

The goal is also constrained by a set of the capacity constraints, which ensures that a service s is assigned to
a node n only if there are available residual computing resources.

The security Resource Planning Module is implemented as an autonomous plugin that receives a list of the
enablers and the topology information from the System Model, based on that information we run the ILP
implemented using IBM CPLEX Optimizer engine that gives the selected security enablers that cope with the
security attack and the nodes where this security enablers have to be installed.

Page 19 of 31

5 USE CASES DESCRIPTION FOR THE SECURITY ENFORCEMENT

ENABLERS
In the section we give a description for each use case defined in the deliverable D6.2 the role of these two
components; the Security Enabler Provider and the Security Resource Planning:

5.1 BMS.2: INSIDER ATTACK ON THE FIRE SUPPRESSION SYSTEM

The main objective of this use-case is to evaluate ANASTACIA framework for protecting the system from an
insider attack and avoid any damage to the building assets. In this use-case, the attacker exploits the building
operations workstation to request the activation of fire alert system managed by an IoT device. To cope with
this attack, the Cooja simulator through a Cooja VNF agent will be used as main Security Enabler in order to
replicate the current IoT affected environment, isolating the attacker into a virtual environment allowing the
system administrator to evaluate the risk and impact of the unauthorized attempts generated by the
attacker.

Figure 9: IoT-Honeynet policy deployment

Figure 9: IoT-Honeynet policy deployment shows the main workflow for the policy IoT-Honeynet policy
deployment for this use case:

1. The Reaction module generates an IoT-Honeynet MSPL policy.
2. The Reaction module sends the MSPL policy to the Security Orchestrator.
3. The Security Resource Planning in the Security Orchestrator identifies IoT_Honeynet as the main

capability for the MSPL.
4. The Security Resource Planning request the list of the Security Enabler candidates to the Security

Enabler Provider, indicating IoT_Honeynet as the main identified capability.
5. The Security Enabler Provider performs a capability matching, generating the list of Security Enabler

candidates.
6. The Security Enabler Provider returns the list including Cooja as main candidate.

Page 20 of 31

7. The Security Resource Planning request the system information to the system model database.
8. The Security Resource Planning retrieves the requested information.
9. The Security Resource Planning makes decides to use Cooja as Security Enabler taken into account

the status of the network and the available resources.
10. The Security Resource Planning request a policy translation specifying Cooja as Security Enabler.
11. The Policy Interpreter performs the policy translation, generating the Cooja Security Enabler

configuration.
12. The Security Resource Planning receives the Cooja configuration and then deliver it to the Security

Orchestrator which will be in charge to enforce the Security Enabler configuration.

Regarding the Cooja Security Enabler configuration, the Cooja simulation environment allows generating
custom environments, since the IoT device specification up to more advanced network configurations like
the transmitting range, or the success ratio.

<simconf>

 ...

 <simulation>

 <title>IoT-Honeynet-MSPL_b22c6384-ed08-487b-a3ca-ce2e557ca434</title>

 <radiomedium>

 ...

 org.contikios.cooja.radiomediums.UDGM

 <transmitting_range>15.0</transmitting_range>

 <interference_range>15.0</interference_range>

 <success_ratio_tx>1.0</success_ratio_tx>

 <success_ratio_rx>1.0</success_ratio_rx>

 </radiomedium>

 ...

 <motetype>

 se.sics.cooja.mspmote.WismoteMoteType

 <identifier>1</identifier>

 <description>CoAP Server</description>

 <source>[SOURCE_DIR]/coap-server.c</source>

 <commands>make coap-server.wismote TARGET=wismote</commands>

 <firmware>[FIRMWARE_DIR]/coap-server.wismote</firmware>

 ...

 <moteinterface>org.contikios.cooja.interfaces.Position</moteinterface>

 <moteinterface>org.contikios.cooja.mspmote.interfaces.MspMoteID</moteinterface>

 ...

 </motetype>

 <mote>

 <breakpoints />

 <interface_config>

 se.sics.cooja.interfaces.Position

 <x>33.260163187353555</x>

Page 21 of 31

 <y>30.643217359962595</y>

 <z>0.0</z>

 </interface_config>

 <interface_config>

 se.sics.cooja.mspmote.interfaces.MspMoteID

 <id>1</id>

 </interface_config>

 <motetype_identifier>1</motetype_identifier>

 </mote> ...

</simconf>

Figure 10: Cooja configuration example

Figure 10: Cooja configuration example shows a Cooja configuration example, which is defining a mote type
for an IoT device that implements CoAP, as well as some IoT device attribute like the physical location and
the unique identifier. Once the Security Orchestrator receives the configurations it will enforce the
configuration over the architecture.

Figure 11: Cooja deployment

Figure 11: Cooja deployment shows the IoT-Honeynet deployment process:

1. If the Cooja VNF which implements the Security Enabler is not already running, the Security
Orchestrator will request the Cooja deployment to the NFV MANO.

2. The NFV MANO then deploys the Cooja VNF which contains the Cooja agent.
3. The NFV MANO notifies the Security Orchestrator when the VNF is correctly deployed.
4. The Security Orchestrator requests the Cooja configuration enforcement.
5. The Cooja agent in the starts the simulation using the specific Cooja configuration.
6. The Security Orchestrator request to the SDN Controller a traffic forwarding in order to redirect the

traffic from/to the attacker to the virtual environment.

Page 22 of 31

5.2 MEC.3: DOS/DDOS ATTACKS USING SMART CAMERAS AND IOT DEVICES

The main objective of the MEC.3 use case is to validate ANASTACIA system against malicious IoT attackers
that will attempt to denial of service through cameras system. In this use case a group of hackers gets the IP
address of IoTs and cameras and use if for DDoS attack. Thus, this section identifies the different steps of
test-cases to implement and evaluate UC_MEC.3 on Mobile (Multi-access) Edge Computing testbed. The
following section will describe the role of Security Enabler Provider and the Security Resource planning
modules in the use case. In this case, the process is compounded by the following steps:

1. The Reaction sends a MSPL file with the selected capability to Security Orchestrator.
2. The security orchestrator requests the list of security enablers from the security enabler provider.
3. The security enabler provider returns the list of available enablers to the security orchestrator.
4. The security orchestrator requests from the system the enabler flavours from OpenStack and the list

of nodes that can host the security enablers.
5. The security resource Planning selects the security enabler and send it to the security orchestrator

that will send it plus the MSPL file received from the reaction module to the policy interpreter.
6. The policy interpreter requests the security Enabler plugin from the security enabler provider.
7. The security enabler provider provides the appropriate plugin to the policy interpreter.
8. The policy interpreter performs the translation and returns the security enabler configuration to the

Security Orchestrator.
9. The security orchestrator based on the enabler configuration will enforce the configuration.

Figure 12 : Use case MEC.3: DOS/DDOS attacks using smart camera and IoT devices

Page 23 of 31

Once the reaction component chooses the mitigation strategy to apply, in this use case the “filtering layer
three” capability is chosen. This capability will be sent to the Security Orchestrator Figure 12 step 1 in form
of an MSPL file, then the security orchestrator will request the list of security enablers that have the previous
filtering capability, “getEnablerList(Filtering)” Figure 12 (step 2). As soon as, the security enabler provider
receives the request it will query the list of enablers from the Enabler Repository and returns the list of
available enablers; “IPtables, Different controllers such as (ONOS, Open DayLight), programmable switches
as OpenVSwitch, Network Intrusion Detection & Prevention System as SNORT, etc.” to the security
orchestrator Figure 12 (step 3), which will transmit it to the Security resource planning. The security
orchestrator based on the list of enablers will request from the system model the enabler flavours from
Openstack and the list of nodes that can host the enablers Figure 12 (step 4). The security resource Planning
will execute an integer linear programming (ILP) based on the system model information and the list of
security enablers, and it will select the enabler based on different criteria as the infrastructure capacities.
The selected enabler will be sent by the resource planning to the security orchestrator that will send it plus
the MSPL file received from the reaction module to the policy interpreter Figure 12 (5). The policy interpreter
will request the security Enabler plugin from the security enabler provider Figure 12 (6). The security enabler
provider will provide the appropriate plugin to the policy interpreter Figure 12 (7). The policy interpreter
performs the translation and returns the security enabler configuration to the Security Orchestrator Figure
12 (8). Finally, the security orchestrator based on the enabler configuration will enforce the configuration
Figure 12 (9).

5.3 BMS.3: REMOTE ATTACK ON THE BUILDING ENERGY MICROGRID

The BMS.3 describes the attack on a building energy microgrid system. In particular, this scenario copes with
an SQL Injection attack on a SCADA server of the building. To this end, two principal security enablers will be
selected by the Security Enabler Provider in this scenario:

• MMT-Probe and MMT-Security (as DPI engine)

• ONOS (as enabler to enforce the reaction to the attack)

In the following a description of the two MMT enablers is given:

MMT-Probe and MMT-Security: MMT-Probe is a DPI-based tool that allows testing security properties in live
network traffic. Using the DPI technique, MMT-Probe us capable of capturing the traffic of the monitored
link, read each packet and extract information from it. The set of data extracted from the packet (principally
related with the status of the communication) are then fed to the MMT-Security module, in order to test
security properties. In addition, MMT-Probe is also capable of aggregating the extracted information in order
to generate statistics reports regarding the detected connection on the network. All the extracted and the
statistics reports are supplied to other monitoring components in the ANASTACIA framework. In the case of
the BMS.3 use case, an already-deployed and -configured instance of MMT will be used as a DPI monitoring
module in order to detect attacks in the security enforcement plane. Considering this, the Security
Orchestrator does not have to interact with this instance(in forms of configurations) to focus the analysis of
the network, since the MMT software will actively monitor the incoming link of the attack target.

The aforementioned utilities are supplied in form of a virtual image that is ready to be deployed in the
monitored network.

Any instance of the MMT-Probe can be configured to match the analysis requirements of the particular
scenario. This is done by adjusting the configuration options that are provided to the new MMT instance. For
further reference regarding how to configure MMT-Probe, please refer to D3.2.

Page 24 of 31

5.4 BMS.4: CASCADE ATTACK ON A MEGATALL BUILDING

The BMS.4 use case describes a scenario in which the adversary is attacking a mega-tall building with an IoT
infrastructure. The attacker manipulates the temperature sensors' values to very high levels which will trigger
the fire and evacuation alarms on targeted floors, causing physical damage to the building infrastructure.
ANASTACIA reacting to attack will use relevant MSPL policies to counter thread. ONOS will use policies to
enforce adherence to specific network flows in SEP while Security Orchestrator will instruct the IoT controller
to turn off/deactivate the IoT device.

1. In this scenario security enablers selected by the SEP are following:

• IoT Controller – will enable/disable IoT temperature sensor,

• ONOS – will control SDN traffic flow to IoT device,

2. The enabler configuration will be defined in this fashion:

IoT Controller (example listed in 0):

• Sensor identifier (IP address/port) that will be required to identify sensor in IoT Network.

• Action type: enable – turn on/activate IoT sensor, disable – turn off/deactivate IoT sensor,

SDN flow control (ONOS):

• After selecting the enabler by the security resource planning, using the relevant MSPL policy, the
Security Orchestrator instructs the SDN controller to drop the malicious traffic, by enforcing the
configuration given by the Policy Interpreter through the Security Enabler Provider

• This malicious traffic is identified using the IP source (The adversary) and IP destination (The target
IoT device),

• Action type: drop the malicious traffic at the edge OVS (Open Virtual Switch) in order to avoid
spreading it over the network.

Page 25 of 31

6 CONCLUSIONS
This document provides a first overview of the first results of ANASTACIA Task 3.3, which aims to manage the
first stage of Security Enforcement Enablers requirements established in high-level terms through the
ANASTACIA architectural components and their integration.

It thoroughly describes the inner core functionalities of the Security Enabler Provider and its different
interactions with other components, and it also describes the Security Resource Planning component a sub
component of the Security Orchestrator and its interaction with the other components. Then we have
presented a first implementation of these components. Finally, we have discussed the different the security
enforcement capabilities regarding the different defined use cases.

Page 26 of 31

7 REFERENCES

[1] D. R. (. T. T. I. F. (. D. B. (. C. C. (. A. S. J. B. A. M. J. O. (. R. M. P. (. A. E.-D. M. (. S. Ruben Trapero (ATOS),
“D1.3 Initial Architectural Design”.

[2] Sébastien Ziegler, Antonio Skarmeta, Jorge Bernal, Eunsook Eunah Kim, Stefano Bianchi,
“ANASTACIA, Advanced Networked Agents for Security and Trust Assessment in CPS IoT
Architectures”. The 1st 2017 GLOBAL IoT SUMMIT, 2nd Workshop on User-centric security, privacy
and data governance in smart cities (USP4SC). June 2017.

[3] Alejandro Molina Zarca, Jorge Bernal Bernabe, Ivan Farris, Yacine Khettab, Tarik Taleb, Antonio
Skarmeta, “Enhancing IoT Security through Network Softwarization and Virtual Security
Appliances”. International Journal of Network Management, 2018.

[4] I. Farris, J. B. Bernabe, N. Toumi, D. Garcia-Carrillo, T. Taleb, A. Skarmeta, B. Sahlin. “Towards
Provisioning of SDN/NFV-based Security Enablers for Integrated Protection of IoT Systems”. IEEE
Conference on Standards for Communications and Networking (CSCN-2017)

[5] AM Zarca, JB Bernabé, AS, K Yacine, B Dallal, S Bianchi “Initial Security Enforcement Manager
Report”.2018. H2020 Anastacia EU project deliverable D3.1.

javascript:void(0)
javascript:void(0)

Page 27 of 31

8 ATTACHMENTS

8.1 EXAMPLE OF SNORT PLUGIN

1. # # -*- coding: utf-8 -*-

2. """

3. This python module implements a MSPL->SNORT plugin inside the ANASTACIA European Project,

4. extending the MSPL language defined in secured project.

5. How to use:

6. python3 mspl_snort.py [MSPL_FILE.xml]

7.

8. """

9. __author__ = "Dallal Belabed"

10. __copyright__ = "Copyright 2018, ANASTACIA H2020"

11. __credits__ = ["Dallal Belabed", "Alejandro Molina Zarca"]

12. __license__ = "GPL"

13. __version__ = "0.0.2"

14. __maintainer__ = "Dallal Belabed"

15. __email__ = "dallal.belabed@thalesgroup.com"

16. __status__ = "Development"

17.

18.

19. import sys,os

20. import json

21. import logging

22. logging.basicConfig(level=logging.INFO)

23. logger = logging.getLogger(__name__)

24. # Insert the parent path into the sys.path in order to import the mspl

25. parentPath = os.path.abspath("..")

26. if parentPath not in sys.path:

27. sys.path.insert(0, parentPath)

28. import mspl

29.

30. """

31. Output example:

32. {"output":{alert icmp any any -
> any any (msg:"ICMP_DoS ATTACK 1"; detection_filter: track by_src, count 50, seconds 10; sid:100001; rev:001;) \n

33. alert icmp any any -
> any any (msg:"ICMP_DoS ATTACK 2"; detection_filter: track by_src, count 100, seconds 10; sid:100002; rev:001;)"}}

34. """

Page 28 of 31

35.

36. class ITResourceType(mspl.ITResourceType):

37.

38. def get_configuration(self):

39. 'Translate the ITResource element to SNORT configuration'

40. capability_name = self.configuration.capability[0].Name

41. logger.info("get_configuration capability_name...")

42. if not capability_name in mspl.CapabilityType.itervalues():

43. raise ValueError('The capability {} does not exist, please try with the current supported capabilities'.format(capabilit
y_name))

44. # In filtering case, call translation for filtering Action and filtering conf condition

45. try:

46. capability_configuration_function = getattr(self, "get_{}_configuration".format(capability_name))

47. except AttributeError as e:

48. print("Currently, {} is not implemented.".format(capability_name))

49. print(e)

50. sys.exit(1)

51.

52. action, capability_enabler_conf = capability_configuration_function()

53. # Build the enabler configuration, since the action is mandatory is not neccesary to check it

54. enabler_conf = "{} {}".format(action, capability_enabler_conf if capability_enabler_conf else "")

55. return enabler_conf

56.

57. def get_Snort_configuration(self):

58. 'Returns the configuration for Filtering_L4 capability'

59. # For filtering it is only needed the first configuration rule

60. try:

61. configuration_rule = self.configuration.configurationRule[0]

62. except:

63. print("Filtering_L4 capability requires at least a configurationRule element")

64. sys.exit(1)

65. action = configuration_rule.configurationRuleAction.get_configuration()

66. filtering_enabler_conf = configuration_rule.configurationCondition.get_configuration()

67.

68. return (action,filtering_enabler_conf)

69.

70.

71.

72. class FilteringAction(mspl.FilteringAction):

73. def get_configuration(self):

74. 'Returns the filtering action for SNORT'

75. FILTERING_ACTION = {"Alert": "alert", "Log":"log", "Pass":"pass"}

Page 29 of 31

76. return FILTERING_ACTION.get(self.FilteringActionType,"DROP")

77.

78. class FilteringConfigurationCondition(mspl.FilteringConfigurationCondition):

79. def get_configuration(self):

80. 'Returns the traslated filtering SNORT parameters'

81. filtering_enabler_conf = ""

82. packet_filter_condition = self.packetFilterCondition

83. State_ful_Condition = self.statefulCondition

84. time_Condition = self.timeCondition

85. if not packet_filter_condition:

86. return None

87. if not State_ful_Condition:

88. return None

89. if not time_Condition:

90. return None

91.

92. filtering_enabler_conf+=" {}".format(packet_filter_condition.ProtocolType) if packet_filter_condition.ProtocolType el
se ""

93. filtering_enabler_conf+=" {}".format(packet_filter_condition.SourceAddress) if packet_filter_condition.SourceAddress
 else ""

94. filtering_enabler_conf+=" -
> {} ".format(packet_filter_condition.SourcePort) if packet_filter_condition.SourcePort else ""

95. filtering_enabler_conf+=" {} ".format(packet_filter_condition.DestinationAddress) if packet_filter_condition.Destinati
onAddress else ""

96. filtering_enabler_conf+=" {}".format(packet_filter_condition.DestinationPort) if packet_filter_condition.DestinationP
ort else ""

97.

98.

99. filtering_enabler_conf+=" (msg:\"{}\"".format(State_ful_Condition.Message) if State_ful_Condition.Message else ""

100. filtering_enabler_conf+="; detection_filter:{}".format(State_ful_Condition.Detection_filter) if State_ful_Condition.Det
ection_filter else ""

101. filtering_enabler_conf+=", count {}".format(State_ful_Condition.Count) if State_ful_Condition.Count else ""

102. filtering_enabler_conf+=", seconds {}".format(time_Condition.Time) if time_Condition.Time else ""

103. filtering_enabler_conf+="; sid:{}".format(State_ful_Condition.Sid) if State_ful_Condition.Sid else ""

104. filtering_enabler_conf+="; rev:{}".format(State_ful_Condition.Rev) if State_ful_Condition.Rev else ""

105. filtering_enabler_conf+=";)"

106.

107.

108. return filtering_enabler_conf if filtering_enabler_conf else None

109.

110. class M2LPlugin:

111. 'SNORT Medium to low plugin implementation'

112.

Page 30 of 31

113. def get_configuration(self,mspl_source):

114. 'Return the SNORT configuration from the mspl_source'

115. # Customize the pyxb generated classes with our own behavior

116. global mspl

117. mspl.ITResourceType._SetSupersedingClass(ITResourceType)

118. mspl.FilteringAction._SetSupersedingClass(FilteringAction)

119. mspl.FilteringConfigurationCondition._SetSupersedingClass(FilteringConfigurationCondition)

120. #Load the xml

121. it_resource = mspl.CreateFromDocument(mspl_source)

122. # Start the parser process using the xml root element

123. return it_resource.get_configuration()

124.

125. if __name__ == "__main__":

126.

127. #output file

128. outputfile = "local.rules";

129. source = open(outputfile, "w")

130. # Pretty print

131. separator = "*"

132. separator_group = separator*5

133. title = "SNORT CONFIGURATION"

134. print("\n{}{}{}".format(separator_group,title,separator_group))

135.

136. for i in range (1,len(sys.argv)):

137. print (sys.argv[i])

138. xml_file = sys.argv[i]

139. # Instantiate the plugin

140. m2lplugin = M2LPlugin()

141. logger.info("Reading mspl file...")

142. xml_source = open(xml_file).read()

143. logger.info("Translating mspl to SNORT...")

144. enabler_configuration = m2lplugin.get_configuration(xml_source)

145. print(enabler_configuration)

146. source.write(enabler_configuration+ "\n")

147. print("{}{}{}\n".format(separator_group,separator*len(title),separator_group))

148. print ("Snort file path: " + os.path.abspath(outputfile))

149.

150. source.close()

Page 31 of 31

8.2 EXAMPLE OF SECURITY ENABLER FOR BMS.4 USE CASE

1. <?xml version='1.0' encoding='UTF-8' standalone='yes'?>
2. <ITResource
3. xmlns="http://modeliosoft/xsddesigner/a22bd60b-ee3d-425c-8618-beb6a854051a/ITResource.xsd"
4. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5. xsi:schemaLocation="http://modeliosoft/xsddesigner/a22bd60b-ee3d-425c-8618-

beb6a854051a/ITResource.xsd ANASTACIA_MSPL_XML_Schema.xsd">
6. <configuration xsi:type='RuleSetConfiguration'>
7. <capability>
8. <Name>IoT_control</Name>
9. </capability>
10. <configurationRule>
11. <configurationRuleAction xsi:type='PowerMgmtAction' >
12. <PowerMgmtActionType>OFF</PowerMgmtActionType>
13. </configurationRuleAction>
14. <configurationCondition xsi:type='FilteringConfigurationCondition'>
15. <isCNF>false</isCNF>
16. <packetFilterCondition>
17. <DestinationAddress>2001:720:1710:4::2</DestinationAddress>
18. <DestinationPort>5683</DestinationPort>
19. </packetFilterCondition>
20. <applicationLayerCondition xsi:type='IoTApplicationLayerCondition'>
21. <URL>.power_off</URL>
22. <method>PUT</method>
23. </applicationLayerCondition>
24. </configurationCondition>
25. <externalData xsi:type='Priority'>
26. <value>0</value>
27. </externalData>
28. <Name>Rule0</Name>
29. <isCNF>false</isCNF>
30. </configurationRule>
31. <resolutionStrategy xsi:type='FMR'/>
32. <Name>MSPL_b22c6384-ed08-487b-a3ca-ce2e557ca434</Name>
33. </configuration>
34. </ITResource>

