

ANASTACIA has received funding from the 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ
Horizon 2020 research and innovation programmeunder Grant Agreement N° 731558

and from the Swiss State Secretariat for Education, Research and Innovation.
¢Ƙƛǎ ŘƻŎǳƳŜƴǘ ƻƴƭȅ ǊŜŦƭŜŎǘǎ ǘƘŜ !b!{¢!/L! /ƻƴǎƻǊǘƛǳƳΩǎ ǾƛŜǿΦ

The European Commission is not responsible for any use that may be made of the information it contains.

D3.2
Initial Security Orchestrator
Report
This deliverable presents the first results of the ANASTACIA Task 3.2
which aims to provide efficient orchestration of the SDN, NFV and IoT
domains in order to enforce the security policies.

Distribution level PU

Contractual date 30.06.2018 [M18]

Delivery date 02.07.2018 [M19]

WP / Task WP3 / T3.2

WP Leader AALTO

Authors T. Taleb, Y. Khettab, A. Laghrissi (AALTO),

D. Rivera (MONT), R.Marín Pérez (ODINS),

J. Bernal, A. Molina (UMU),

D.Belabed (THALES),

A.Mady, P.Sobonski, D. Mehta (UTRC),

EC Project Officer Carmen Ifrim
carmen.ifrim@ec.europa.eu

Project Coordinator SoftecoSismatSpA
Stefano Bianchi
Via De Marini 1, 16149 Genova ς Italy
+39 0106026368
stefano.bianchi@softeco.it

Project website www.anastacia-h2020.eu

mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/

 Page 1 of 34

Table of contents

PUBLIC SUMMARY ... 3

1 Introduction ... 4

1.1 Aims of the document ... 4

1.2 Applicable and reference documents ... 4

1.3 Revision History ... 5

1.4 Acronyms and Definitions ... 5

2 Refinement of security policies for enforcement .. 6

2.1 Interactions with Policy Interpreter for refining security policies ... 6

2.1.1 Proactive approach .. 6

2.1.2 Reactive approach .. 7

2.2 Interactions with Security Enabler Provider for selecting the appropriate security enablers 8

2.3 Security Resource Planning module .. 9

2.4 Interactions with the Monitoring agents .. 9

2.4.1 MMT-Probe Monitoring Agent ... 9

3 Orchestration of security enablers and relevant controls... 12

3.1 SDN networking ... 12

3.2 Virtual Network Functions ... 14

3.3 IoT security controls .. 14

3.4 Security Orchestrator System Model .. 16

3.5 Orchestration Strategies .. 18

3.5.1 Orchestration Tools ... 18

3.5.2 Sample Orchestration Scenario .. 19

3.6 REST APIs and Basic Mechanisms .. 21

4 Use cases description for the Security Orchestrator ... 23

4.1 BMS.2: Insider attack on the fire suppression system .. 23

4.2 MEC.3: DoS/DDoS attacks using smart cameras and IoT devices ... 24

4.3 BMS.3: Remote attack on the building energy microgrid .. 25

4.4 BMS.4: Cascade attack on a megatall building .. 27

5 Implementation of the Security Orchestrator ... 28

5.1 Security Orchestrator Code Base ... 28

5.2 Open Source Mano .. 29

5.3 ONOS SDN Controller .. 29

5.4 IoT Controller ... 30

 Page 2 of 34

6 Conclusions .. 32

7 References ... 33

Index of figures
Figure 1 Main interactions between the Policy Interpreter and the Security Orchestrator in proactive
approach .. 6

Figure 2 main interactions between the Policy Interpreter and the Security Orchestrator in reactive
approach .. 7

Figure 3Security Enablers Provider Interactions ... 8

Figure 4 MMT-Probe General Pipeline .. 10

Figure 5 SDN Networking Architecture & Management ... 13

Figure 6 Different planes and APIs contemplated for the IoT controller architecture 15

Figure 7 System Model Data Structure ... 16

Figure 8 Security Orchestrator architecture .. 19

Figure 9 Sequence diagram for Security orchestration (processing and enforcement) 20

Figure 10 Sequence diagram for use case BMS.2 .. 24

Figure 11 Sequence diagram for MEC.3 use case interactions with Security Orchestrator 24

Figure 12 Sequence diagram for the BMS.3 use case ... 26

Figure 13 Sequence diagram for the BMS.4 use case ... 27

Figure 14 Structure of the Security Orchestrator Code Base .. 28

Figure 15Overview of Open Source Mano components ... 29

Figure 16 SDN Topology View ... 30

Figure 17 IoT controller implementation elements .. 30

Figure 18 Northbound API JSON input example ... 31

 Page 3 of 34

PUBLIC SUMMARY
This deliverable presents the first results of the ANASTACIA Task 3.2 which aims to provide
efficient orchestration of the SDN, NFV and IoT domains in order to enforce the security policies. It
plays a major role in the ANASTACIA architecture accounting for it interactions with other
components of the framework [1].

IoT devices are prone to various security attacks varying from Denial of Service (DoS) to Man-in-
the-Middle attacks which are hindering their wide adoption. In this vein, SDN and NFV represent
key technologies towards a novel concept of on-demand security countermeasures provisioning
based on programmability and advanced virtualization technologies.

The Security Orchestrator is responsible for providing on-demand security policy enforcement on
the IoT domain. This task is performed by taking in charge the transformation of the relevant
security policies provided by the security policy interpreter into specific enabler configuration. It
also monitors and supervises the underlying infrastructure for any potential flaws. It supports a
variety of security capabilities of different categories, namely: SDN security capabilities, NFV
security capabilities and IoT security controls.

In first report, we will present the different aspects of the Security Orchestrator within the
ANASTACIA framework relevant to its technologies, strategies, interactions with other
components and its major role in the use cases integration.

 Page 4 of 34

1 INTRODUCTION
This section will introduce this document by enumerating its aims, references, revision history and
the different acronyms that were used.

1.1 AIMS OF THE DOCUMENT

¢Ƙƛǎ ŘƻŎǳƳŜƴǘ ƛǎ ǘƘŜ ǎŜŎƻƴŘ ²tо άtƻƭƛŎȅ 9ƴŦƻǊŎŜƳŜƴǘ ŀƴŘ wǳƴ ¢ƛƳŜ 9ƴŀōƭŜǊǎέ ǊŜǇƻǊǘ ǿƘƛŎƘ
focuses on the development of core enablers for the deployment and implementation phase,
including the security enforcement manager, the security orchestrator, the virtual resources
manager and the autonomic prediction and reconfiguration enabler.

More precisely, this deliverable tackles the Task 3.2 within WP3. This task is about the Security
Orchestrator, which is a centric component of the ANASTACIA architecture. It ensures to deploy
the necessary security policies either as a reaction to a detected attack or as proactive measures
set by the users of the framework. To this aim, it employs an intelligent orchestration system that
makes use of SDN, NFV and IoT controls to mitigate the security flaws. Once a certain security
policy has been deployed, it stores relevant information about it and make it available for other
components of the framework.

This document is structured as follows: Section 2 will tackle the relevant concepts to the
refinement and enforcement process of the high-level security policies, as part of the interaction
within WP3 and WP4 components. Section 3 will explain the core functionalities of the Security
Orchestrator, including its main technologies, security capabilities, interactions and what it offers
to the rest of the framework. In section 4, we will identify the main role of the Security
Orchestrator in showcasing the ANASTACIA framework thanks to the pre-defined use cases.
Finally, in section 5, we will further detail the implementation of the Security Orchestrator that
was used in many of our Proof-of-Concept demos shown in the ANASTACIA plenary meetings.

1.2 APPLICABLE AND REFERENCE DOCUMENTS

This document refers to the following documents:

ǒ ANASTACIA project deliverable D1.3 ς Initial Architecture Design
ǒ ANASTACIA Grant Agreement N°731558 ς Annex I (Part A) ς Description of Action
ǒ ANASTACIA Consortium Agreement v1.0 ς December 6th 2016
ǒ ANASTACIA deliverable D1.1 ς Holistic Security Context Analysis
ǒ ANASTACIA deliverable D1.2 ς User-centered Requirement Initial Analysis
ǒ ANASTACIA deliverable D2.1 ς Policy-based Definition and Policy for Orchestration, initial

report
ǒ ANASTACIA deliverable D3.1 - Initial Security Enforcement Manager Report

 Page 5 of 34

1.3 REVISION HISTORY

Version Date Author Description

0.1 7-05-2018 Yacine Khettab Initial document structure and contributions

0.2 14-05-2018 Piotr Sobonski Initial UTRC contributions

0.3 16-05-2018 Yacine Khettab Content contribution for chapter 2-5

0.4 18-05-2018 Yacine Khettab Initial D3.2 draft

0.5 27-06-2018 Laghrissi Abdelquoddouss Final version

1.4 ACRONYMS AND DEFINITIONS

Acronym Meaning

MSPL Medium-level Security Policy Language

HSPL High-level Security Policy Language

IoT Internet of Things

MANO Management and Orchestration

NFV Network Function Virtualization

SDN Software Defined Networking

MEC Mobile Edge Computing

OSM Open Source Mano

ONOS Open Network Operating System

M2L Medium to Low

OVS Open Virtual Switch

SO Security Orchestrator

DPI Deep Packet Inspection

IDS Intrusion Detection System

SEP Security Enforcement Plane

 Page 6 of 34

2 REFINEMENT OF SECURITY POLICIES FOR ENFORCEMENT
In the section, we will present the different interactions and mechanisms behind the security policy
enforcement from the Security Orchestrator point of view.

2.1 INTERACTIONS WITH POLICY INTERPRETER FOR REFINING SECURITY

POLICIES

This section shows the main interactions for a policy-based deployment between the Policy
Interpreter and the Security Orchestrator. Two approaches are discussed: the proactive approach
and the reactive approach. In the proactive approach, the security policy can be part of a
preventive measure. In this case, the administrator decides to deploy it with the aim to prevent
issues or to establish some default behavior from start-up. On the other hand, the reactive
approach allows deploying a security policy as part of an automatic countermeasure.

2.1.1 Proactive approach

Figure 1 shows the main interactions between the Policy Interpreter and the Security Orchestrator
for a security policy deployment in a proactive approach. The Policy Editor Tool is shown just in
order to provide the starting point of the workflow. In this case, the following steps compound the
process:

Figure 1 Main interactions between the Policy Interpreter and the Security Orchestrator in proactive approach

1. The system administrator defines a high-level policy (HSPL) through the Policy Editor Tool
and he/she requests the policy enforcement.

2. The Policy Interpreter performs the High-level Security Policy Language (HSPL) to Medium-
level Security Policy Language (MSPL) refinement process. This process has been simplified
in the diagram, but it also interacts with the Security Enabler Provider in order to obtain a
list of candidate security enablers according on the capabilities.

3. The Policy Interpreter sends the MSPL and the list of candidate security enablers to the
Security Orchestrator.

 Page 7 of 34

4. The Security Orchestrator makes the decision regarding which Security Enabler must be
used in order to enforce the security policy.

5. The Security Orchestrator requests a policy translation to the Policy Interpreter in order to
get the configuration for the selected security enabler from the MSPL policy.

6. The Policy Interpreter performs the translation, using a plugin received in another
interaction with the Security Enabler Provider (not shown in the figure for simplicity).

7. The Policy Interpreter sends the security enabler configuration to the Security
Orchestrator.

2.1.2 Reactive approach

Figure 2 shows the main interactions between the Policy Interpreter and the Security Orchestrator
for a security policy deployment in a reactive approach. The Reaction process is showed just in
order to provide the starting point of the workflow. In this case, the process is compounded by the
following steps:

Figure 2 main interactions between the Policy Interpreter and the Security Orchestrator in reactive approach

1. The reaction module sends a MSPL policy as a reaction countermeasure.
2. The Security Orchestrator makes the decision regarding which Security Enabler must be

used in order to enforce the security policy. The list of candidate security enabler has been
obtained previously in an interaction with the Security Enabler Provider (not shown in the
figure for simplicity).

3. The Security Orchestrator requests a policy translation to the Policy Interpreter in order to
get the configuration for the selected security enabler from the MSPL policy.

4. The Policy Interpreter performs the translation using a plugin received in another
interaction with the Security Enabler Provider (not shown in the figure for simplicity).

5. The Policy Interpreter sends the security enabler configuration to the Security
Orchestrator.

 Page 8 of 34

2.2 INTERACTIONS WITH SECURITY ENABLER PROVIDER FOR SELECTING THE

APPROPRIATE SECURITY ENABLERS

One of the roles of the Security Enabler Provider in the Security Orchestration Plane is to identify

the security enablers that can provide specific security capabilities, in order to meet the security

policies requirements. When the security orchestrator component receives the MSPL file from the

reaction module, it requests the enablers list for the identified capabilities from Security Enabler

Provider. The component selects the list of the enablers that fit with the sent reaction capability,

ŀǎ ŀƴ ŜȄŀƳǇƭŜΣ ŦƻǊ ŦƛƭǘŜǊƛƴƎ ŎŀǇŀōƛƭƛǘȅ ǘƘŜ ŜƴŀōƭŜǊǎ Ŏŀƴ ōŜ άhǇŜƴ Ǿ{ǿƛǘŎƘ όh±{ύΣ {ƴƻǊǘΣ LǇ¢ŀōƭŜΣ

ŜǘŎέΦ ¢Ƙƛǎ ǎŜƭŜŎǘƛƻƴ ƛǎ ŘƻƴŜ ōȅ ǊŜǉǳŜǎǘƛƴƎ ǘƘŜ ά{ŜŎǳǊƛǘȅ 9ƴŀōƭŜǊ wŜǇƻǎƛǘƻǊȅέ ǘƘŜƴ ǘƘŜ ƭƛǎǘ ƻŦ ǘƘŜ

suitable enablers is selected and sends to the Security Orchestrator where a sub-module in the

Security Orchestrator called the Resource Planner will select the adequate enabler among the

received enablers list. This planner has been implemented using python language, Falcon which is

a bare-metal web API framework for Python, and Gunicorn 'Green Unicorn' which is Python WSGI

HTTP Server for UNIX.

Figure 3Security Enablers Provider Interactions

 Page 9 of 34

2.3 SECURITY RESOURCE PLANNING MODULE

The security resource planning uses the list of the selected enablers returned to the security
orchestrator by the Security Enabler Provider to decide the more adequate enabler(s) among the
list to be used for enforcing the security. This selection is done through an Integer Linear
Programming (ILP) model. The aim of the model is to select the best service (Virtual Network
Function (VNF)) among the list of enablers selected previously by the selected Security Enabler
Provider, in order to cope with a security attack and minimize the maximum load nodes (CPU,
RAM, bandwidth) of the topology.

 The different VNFs are considered as a set of enablers, each enabler is characterized by its type
and resources. The security resource planning requests from the SysModel the required topology
information. The set of topology nodes is also characterized by its type and its resources R. The
goal of the model is minimizing the maximum load nodes to improve provider cost revenue
(provider energy efficiency goal). Furthermore, we assume that

· Multiple services (VNFs) can be allocated on the same node,

· A VNF service cannot be split on multiple nodes.

· Each node can host multiple services.

The security Resource Planning Module is implemented as an autonomous plugin that receives a
list of the enablers and the topology information from the SysModel. Based on this information,
the resource planner runs the ILP implemented using IBM CPLEX Optimizer engine. It selects the
needed security enablers, helps to cope with the security attacks, and obtains the nodes where
these security enablers have to be installed.

2.4 INTERACTIONS WITH THE MONITORING AGENTS

The Security Orchestrator has the ability to deploy new monitoring agents in runtime if required.
This might be the result of the enforcement of a security policy or the reaction against a detected
attack on the Security Enforcement Plane (SEP). In both cases, the Security Orchestrator needs to
interact with the new instance in order to correctly deploy it, or reconfigure the current instances
on the SEP.

2.4.1 MMT-Probe Monitoring Agent

MMT-Probe is one of the monitoring agents that are integrated in the ANSTACIA Platform. A Deep
Packet Inspection (DPI) tool that allows capturing packets from the monitored network, extract
information from them, and test security properties that allow detecting security incidents.

The capturing capabilities of MMT-Probe are provided by the MMT-DPI library, which makes use
of the libpcap or DPDK libraries to extract the packets from the network interface. The library
enables to copy the packets from the network interface to the MMT pipeline for its analysis. The
whole pipeline is depicted in Figure 4.

 Page 10 of 34

Figure 4 MMT-Probe General Pipeline

Once a packet is extracted, it is analyzed in the MMT-DPI library. This library can be easily
extended thanks to his modular structure, through the development of plugins. Each plugin
implements the dissection rules and the information extraction for a particular network or
application protocol. Typical examples of these plugins are the implementation of the IP, TCP and
UDP protocols. In spite of this and since MMT-Probe uses DPI technology to inspect the packet it is
possible to implement any upper-layer protocol (such as skype or even multimedia protocols) as
long as they have a fixed and recognizable structure.

As long as the dissection is performed, the MMT-DPI library extracts the information according to
the format specified in the plugin. This information is then aggregated and used with two principal
goals. On one hand, MMT generates a periodical statistics report about the opened connections
on the network. On the other hand, the extracted information is also fed to the MMT-Security
library in order to perform further security analysis with it.

The MMT-Security library is an extensible engine that can be enhanced by the implementation of
new security rules. Using the information extracted with DPI, MMT-Security tests the security
properties in order to detect attacks and incidents on the monitored network. The results of such
evaluations are also reported in security alerts along with the statistics reports aforementioned.

The two types of reports here described represent the principal output of MMT-Probe. Both
reports are published in the Kafka-Broker module that notifies the reports to the ATOS XL-SIEM
module. The ATOS XL-SIEM will correlate these reports with further information coming from
other sources in order to generate the verdicts about the detected incidents. It is then the XL-SIEM
tool that transmits the threats detected by MMT-Probe to the Reaction Plane.

 Page 11 of 34

2.4.1.1 MMT-PROBE AND VNF
The MMT technology is a Linux-based technology that can be easily integrated into VNF-enabled
platforms. This flexibility is allowed by the fact that MMT is shipped as a ready-to-deploy .deb
package, which enables the utilization of the software right after it is being installed. In this sense,
the MMT software can be delivered in form of Virtual Machine images, ISO disk images, .deb
packages (to be used with Docker) among others. This flexibility is supported by the fact that the
SDN controllers usually employ a container or virtualization approach which allows emulating a
complete Linux environment where MMT can easily be installed.

2.4.1.2 MMT-PROBE CONFIGURATIONS FOR VNF ENVIRONMENTS
MMT comes with comprehensive set of configurations in order to adapt the processes of sniffing,
capturing, extraction, security testing and report of the raised alerts. Despite this, the
configuration options can be classified into two principal groups:

¶ Resources used by MMT: This group of configurations specifies how MMT should use the
resources of the machine running the software. It includes:

Á thread-nb: Indicated the number of threads MMT-Probe will use to process
packets.
Á logfile: The location of the log file of MMT.
Á input-mode: This is the analysis moŘŜ ƻŦ aa¢Φ άhƴƭƛƴŜέ όŘƛǊŜŎǘ ŎŀǇǘǳǊŜ
ŦǊƻƳ ŀ ƴŜǘǿƻǊƪ ƛƴǘŜǊŦŀŎŜύ ŀƴŘ άƻŦŦƭƛƴŜέ όǇŎŀǇ ŀƴŀƭȅǎƛǎύ ŀǊŜ ǘƘŜ ǾŀƭƛŘ ǾŀƭǳŜǎ
for this field.

Á input-ǎƻǳǊŎŜΥ ¢Ƙƛǎ ƛǎ ǘƘŜ ǎƻǳǊŎŜ ƻŦ ǘƘŜ ǇŀŎƪŜǘǎ ǘƻ ŜȄǘǊŀŎǘΦ CƻǊ άƻƴƭƛƴŜέ ƳƻŘŜΣ
ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ ƛƴǘŜǊŦŀŎŜ ƛǎ ǊŜǉǳƛǊŜŘΦ CƻǊ άƻŦŦƭƛƴŜέ ƳƻŘŜΣ ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ
pcap file is required.

¶ MMT Reports: This section includes configurations about the reports generated by MMT.
The principal options are:

Á kafka-output: This set of configurations allow publishing the generated
reports in a Kafka channel. It requires a set of sub configurations.

Á ŜƴŀōƭŜŘΥ άлέ όŦŀƭǎŜύ ƻǊ άмέ όǘǊǳŜύ ǘƻ ŘƛǎŀōƭŜ ƻǊ ŜƴŀōƭŜ YŀŦƪŀ ƻǳǘǇǳǘΦ
Á hostname: The hostname of the Kafka server.
Á port: the port number of the Kafka server.
Á stats-period: This indicates to MMT that it should generate statistics report

each X seconds.
Á session-report report_session: This set of configurations enables or disables

the reporting of protocols that belong to a session.
Á event_report: This set of configurations is used to create customized reports

based on events. Please refer to the MMT Manual for further information
about this.

Á condition_report: This set of configurations is used to create customized
reports based on conditions. Please refer to the MMT Manual for further
information about this.

Á security2: This configuration sets the options of the security reports. It is
composed of the following sub-options:

 Page 12 of 34

Á thread-nb: Specifies in which thread the security evaluation should be
performed.

Á exclude-ǊǳƭŜǎΥ ! ƭƛǎǘ ƻŦ ǘƘŜ ǊǳƭŜǎΩǎ L5ǎ ǘƘŀǘ ŀǊŜ ŜȄŎƭǳŘŜŘ ŦǊom the analysis.
Á cpu-mem-usage: This set of options configures the periodic CPU and

memory usage reports. If contains the following options:
Á enable: Enables or disables these reports.
Á frequency: Sets the time interval (in seconds) to generate these reports.

The aforementioned list of options is specified in a text file located in
/opt/mmt/probe/conf/online.conf. This file can easily be generated on demand and implanted in a
VNF instance in order to correctly configure the newly deployed DPI module.

The presented list is not extensive, and it is intended to act as an initial reference of the possible
configurations of the MMT software. For further reference and an exhaustive list of the available
options, please refer to the MMT manual provided with this document [2].

3 ORCHESTRATION OF SECURITY ENABLERS AND RELEVANT CONTROLS
In order to accommodate the constraints and heterogeneity of IoT systems, softwarized networks
seem to be the most compelling solution. Network softwarization is a recent promising trend
aiming at radically advancing telecommunication industries by embracing cloud computing
technologies and software models in network services. The main pillars behind this revolution are
Software Defined Networking (SDN) and Network Function Virtualization (NFV). On one hand, SDN
introduces a new level of network programming by decoupling control and data plane. A logically
centralized controller is in charge of supervising the network state and provides rules to the
network elements for appropriately managing the traffic flows. On the other hand, NFV leverages
virtualization technologies to deploy network elements as software instances, thus allowing an
increased level of flexibility and elasticity in service provisioning. Furthermore, NFV can enable
remarkable reduction in CAPEX/OPEX costs, by replacing dedicated expensive hardware with
commodity servers able to host software-based network appliances.

The IoT paradigm is drastically enhancing our quality of life and utilization of resources to make
things (i.e., home appliances, electronic devices, sensors, etc.) part of the Internet. This paradigm
opens doors to innovations that will build novel type of interactions among things and humans
and enables the realization of smart infrastructures, smart cities, etc. Although SDN and NFV are
two separate paradigms, their joint use can further improve the potential security services offered
by the network and meet the broad range of increasing requirements imposed by IoT applications.

In this section, we will present the main concepts used by the Security Orchestrator in order to
enforce the relevant security policies in the IoT domain.

3.1 SDN NETWORKING

Software Defined Networking (SDN) is a relatively new paradigm, which aims to decouple the
control plane and the data plane for reducing the management complexity and allowing external
ŀǇǇƭƛŎŀǘƛƻƴ ǘƻ ŎƻƴǘǊƻƭ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ōŜƘŀǾƛƻǊΦ {5b ƻŦŦŜǊǎ ƴƻǾŜƭ ŎŀǇŀōƛƭƛǘƛŜǎ ǘƻ ŀŘŀǇǘ, on the fly,
the network flows according to the dynamic application requests. The three main components of
SDN networks are switches, controllers, and communication interfaces.

 Page 13 of 34

Figure 5 SDN Networking Architecture & Management

a) SDN switches: the forwarding of data traffic is the main responsibility of physical and
virtual SDN switches according to the assigned network configuration. To this aim, appropriate
rules are instructed by the SDN controller in the flow tables to perform packet forwarding along
with a wide range of other operations.

b) SDN controller: the intelligence of an SDN-based network is centralized in its SDN
controller, which maintains the state of the whole system and decides on the traffic routing by
updating relevant flow rules on the switches. Its role allows it to have a global vision over the
network, which makes for the most optimized and dynamic networking decisions.

c) SDN interfaces: to facilitate programming and management, the communication
interfaces are fundamental to configure the network behavior. It consists of two main interfaces:
southbound and northbound. While the first one manages the communication between the SDN
controller and the SDN switches, the second one is in charge of the interactions between the user
SDN applications and the SDN controller.

The adoption of SDN in IoT (SDN-enabled IoT systems) is considered as an essential element in the
success of the Security Orchestrator. Leveraging the capabilities of SDN to route, efficiently, the
traffic and optimize the utilization of the network are key enabling functions to manage the
massive amounts of data flow in IoT networks and eliminate bottlenecks. This integration can be
implemented at different levels of the IoT network, such as the access (where the data is
generated), core and cloud networks (where the data is processed and served), which enables IoT
traffic management from end-to-end.

Moreover, SDN can be also leveraged to provide advanced security mechanisms for IoT systems.
For example, traffic isolation between different tenants, centralized security monitoring using the
global vision of the network and traffic dropping at the edge, keeping the malicious traffic from
spreading all over the network.

 Page 14 of 34

3.2 VIRTUAL NETWORK FUNCTIONS

Network Function Virtualization (NFV) refers to the adoption of virtualization technologies in
network environments. Unlike traditional network equipment, NFV decouples the software from
the hardware, bringing value added features and notable capital and operating expenditures
gains. The ETSI (European Telecommunications Standards Institute) has been leading the
standardization of this approach, defining novel architectures, which enable the aforementioned
advantages. The ETSI NFV architecture identifies three main building blocks:

a) Virtualization Infrastructure: this layer includes all the hardware and virtualization
technologies necessary to provide the desired resource abstractions for the deployment of
Virtualized Network Functions (VNFs). This includes Storage, Computing and Networking resources
that are usually managed by a cloud platform.

b) Virtual Network Functions: the core idea of NFV deals with replacing dedicated
hardware equipment with software-based instances of network functions, i.e., the VNFs. They can
be deployed and managed over multiple environments, providing scalable and cost-effective
network functions.

c) Management and Orchestration: the NFV Management and Orchestration (MANO)
module interacts with both the infrastructure and VNF layers in the ETSI NFV architecture. It is
responsible for the management of the global resource allocation which includes: instantiating,
configuring and monitoring VNFs.

Introducing virtualized network resources into the IoT ecosystem brings multiple value-added
features, accounting for their heterogeneity and rapid growth. When coupled with SDN, NFV
cannot only, provide advanced virtual monitoring tools such as Intrusion Detection Systems (IDSs)
and Deep Packet Inspectors (DPIs), but also provision, and configure on-demand and scalable
network security appliances, such as firewalls and authentication systems, in order to cope with
the attacks detected by the monitoring agents.

3.3 IOT SECURITY CONTROLS

IoT security controls comprise a set of operations that can be applied over the IoT infrastructure
through the IoT controller. The IoT controller is in charge of managing the command and control
over the IoT domain, offering high-level of abstraction operations in order to manage the
infrastructure independently of the underlying technology. It has been designed aligned with the
SDN controller philosophy.

 Page 15 of 34

Figure 6 Different planes and APIs contemplated for the IoT controller architecture

Figure 6 shows the different planes and APIs contemplated for the IoT controller architecture,
which are introduced below:

1. Application Plane: In this plane are allocated the applications which require performing
some kind of control actions over the IoT domain. In this case, the Security Orchestrator
could be part of this plane in order to carry out the different IoT operations according to
the security policies. This plane performs the communications with the control plane
through the Northbound API.

2. Northbound API: This API provides a high-level of abstraction API which allows receiving
IoT commands and controls independently of the underlying technology, (e.g. HTTP REST
API).

3. Control Plane: This plane is governed by the IoT Controller, which is in charge to receive
command and controls from the Application plane and then to perform the specified
operations over the required IoT devices using specific IoT communication protocols
through the Southbound API.

4. Southbound API: This API provides the communication between the IoT Controller and the
IoT devices using specific IoT communication protocols depending on the IoT device
implementation and requirements.

5. IoT/CPS Systems Plane: The different IoT devices in the architecture, both physical and
virtual, comprise this plane.

 Page 16 of 34

3.4 SECURITY ORCHESTRATOR SYSTEM MODEL

The System Model is an internal component of the Security Orchestrator which is in charge of
storing data relevant to the underlying infrastructure and enforced security policies. This data is
made available to all of the ANASTACIA components in order to further refine the security policies
and improve the detection mechanisms. Depending on the type of the desired security policy, the
System Model stores the relevant VNF details, SDN rules, IoT actions and related policies.

Figure 7 System Model Data Structure

As the Security Orchestrator expects to receive an MSPL file, each request with its unique ID is
mapped to a class depending on the required security capabilities. An MSPL could require actions
on multiple controllers (e.g., Cooja needs a VM in the OSM and filters in the ONOS). There are
three capability classes: sdn_orch, nfv_orch and iot_orch. Moreover, the System Module keeps
track of the existing IoT devices on the IoT domain along with their status.

ü requests (Security Orchestrator requests class): This class stores the different requests
received by the Security Orchestrator. Each request has:

 req_id: is a unique ID to each request generated by the Security Orchestrator.
 source[user-system]: is ǘƘŜ ǎƻǳǊŎŜ ƻŦ ǘƘŜ ǊŜǉǳŜǎǘΦ Lǘ Ŏŀƴ ōŜ ŜƛǘƘŜǊ άǎȅǎǘŜƳέ ǿƘƛŎƘ
ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ǊŜǉǳŜǎǘ ŎŀƳŜ ŦǊƻƳ ǘƘŜ wŜŀŎǘƛƻƴ !ƎŜƴǘ ƻŦ !b!{¢!/L!Σ ƻǊ άǳǎŜǊέ
which means that it came from the Policy Editor Tool as user-designed policy.

 config: is the unique ID of the MSPL file which relates to the request.
 type: Ŏŀƴ ōŜ ŜƛǘƘŜǊ άǎŘƴέΣ άƴŦǾέ ƻǊ άƛƻǘέΣ ǿƘƛŎƘ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ǊŜǉǳƛǊŜŘ ŎŀǇŀōƛƭƛǘȅΦ

This attribute is used to map the requests to the correct capability class.

 Page 17 of 34

 status: reports the status of the security policy enforcement status. The default
ǾŀƭǳŜ ƛǎ άǇŜƴŘƛƴƎέ ǿƘƛŎƘ ƛǎ ǎŜǘ ǊƛƎƘǘ ŀŦǘŜǊ ǊŜŎŜƛǾƛƴƎ ǘƘŜ ǊŜǉǳŜǎǘΣ ƛǘ ŎƘŀƴƎŜǎ ǘƻ
άŀŎǘƛǾŜέ ŀǎ ǎƻƻƴ ŀǎ ǘƘŜ ǇƻƭƛŎȅ Ƙŀǎ ōŜŜƴ ŜƴŦƻǊŎŜŘΦ

 timestamp: is the time and date of the received request.

ü sdn_orch (SDN orchestration class): This class contains all the details related to the SDN
configuration, which is required either through a direct SDN policy enforcement, or through
part of a VNF configuration:

 rule_id: a unique ID of the injected SDN flow rule.
 ovs_name: the name of the Open Virtual Switch on which the rule has been

enforced.
 req_id*: ǊŜƭŜǾŀƴǘ ǊŜǉǳŜǎǘ L5 ŦǊƻƳ ǘƘŜ άǊŜǉǳŜǎǘǎέ ŎƭŀǎǎΦ

ü nfv_orch (NFV orchestration class): is the class that stores all the information concerning the
security VNFs created through Open Source Mano.

 vnf_id: unique ID of the relevant security enabler.
 ovs_name: name of the OVS on which the VNF is attached.
 ovs_port: the port ID of the OVS on which the VNF is attached
 ip_addr: management IP address of the VNF.
 type: ǘȅǇŜ ƻŦ ǘƘŜ ±bC ό{ƴƻǊǘΣ CƛǊŜǿŀƭƭΧύΦ
 status [build-config-active]:current status of the VNF (instantiating, configuring,

active).
 req_id*: ǊŜƭŜǾŀƴǘ ǊŜǉǳŜǎǘ L5 ŦǊƻƳ ǘƘŜ άǊŜǉǳŜǎǘǎέ ŎƭŀǎǎΦ
 rule_id*: ǊŜƭŜǾŀƴǘ {5b ǊǳƭŜ L5 ŦǊƻƳ ǘƘŜ άǎŘƴψƻǊŎƘέ ŎƭŀǎǎΦ

ü iot_orch (IoT orchestration class): this class keeps track of all the IoT actions, which were
taken as mitigation actions due to a certain security policy.

 action_id: ID of the action to take on an IoT device.
 action: action to take (turn on/off).
 req_id*: ǊŜƭŜǾŀƴǘ ǊŜǉǳŜǎǘ L5 ŦǊƻƳ ǘƘŜ άǊŜǉǳŜǎǘǎέ ŎƭŀǎǎΦ
 ip_addr*: ǊŜƭŜǾŀƴǘ Lt ŀŘŘǊŜǎǎ ƻŦ ǘƘŜ Lƻ¢ ŘŜǾƛŎŜ ŦǊƻƳ ǘƘŜ άƛƻǘψŘŜǾƛŎŜǎέ ŎƭŀǎǎΦ

ü iot_devices (IoT devices class): contains all the information regarding the IoT devices,
including IP address mapping and status.

 ip_addr: IPv6 address of the IoT node.
 name: name of the IoT node (as provided by the user)
 ovs_name: the open virtual switch that is managing the IoT network.
 controller_ip: IP address of the IoT controller of this node.
 status [on-off-authenticated]:current status of the node.

 Page 18 of 34

3.5 ORCHESTRATION STRATEGIES

3.5.1 Orchestration Tools

In order to implement the intelligent orchestration, the Security Orchestrator interacts with three
key components:

¶ The IoT controller: Used to enforce IoT-specific mitigation actions, such as IoT devices
access control, authentication and power on/off. These interactions are done through
Rest-API to send queries to the IoT controller depending on the security policy provided
by the MSPL file.

¶ The NFV MANO: An ETSI-defined framework designed for managing and orchestrating
resources in the cloud. It is used by the security orchestrator to create and configure a
wide range of security enablers. It has three main functioning blocks:

o NFV Orchestrator: Manages the registration of Network Services (NS) and Virtual
Network Function (VNF) packages, lifecycle of different network services and
the resources allocation requests.

o VNF Manager: Configures and monitors each VNF after its instantiation.

o Virtualized Infrastructure Manager (VIM): Interacts with the compute, network
and storage resources (clouds) in order to provision relevant VNFs.

¶ The SDN controller: is accountable for managing network resources and enabling the
programming of the underlying network. The SDN orchestration is done through the
ONOS driver. This driver has been developed in order to automate the SDN
management using one or multiple ONOS SDN controllers. It controls multiple Open
Virtual Switches (OVS) in order to enable the following functionalities:

o Traffic forwarding (steering) to VNFs.

o Traffic mirroring to different VNFs.

o Traffic dropping.

o Bandwidth limitation.

The combined usage of these components enables the security orchestrator to enforce the
relevant security policies either through direct actions such as: traffic dropping and IoT devices
power on/off, or more complex actions when it comes to VNFs:

¶ Provisioning: Creating the appropriate VNF on a chosen VIM (According to the VNF
application graph) such as: Intrusion Detection SystŜƳǎ όL5{ύ ŀƴŘ CƛǊŜǿŀƭƭǎΧ

¶ VNF Configuration: Using the MSPL to low level translation, the security orchestrator
pushes the specific configuration of each VNF (IDS rules, Firewall configuration...)

¶ Networking Setup: Injecting the relevant SDN flow rules to manage the traffic to be
analyzed, for example: mirroring the traffic to a monitoring agent or steering the traffic
through a firewall.

¶ IoT Security Controls: Enforce IoT security operations through the IoT Controller.

 Page 19 of 34

Figure 8 shows the general architecture of the Security Orchestrator, which enables its security
capabilities.

Figure 8 Security Orchestrator architecture

3.5.2 Sample Orchestration Scenario

Figure 9 shows a sequence diagram that describes the overall process of security orchestration
from the processing to the enforcement.

 Page 20 of 34

Figure 9 Sequence diagram for Security orchestration (processing and enforcement)

1. Attack generation from the Attacker to the target node.
2. The Mitigation Action Service generates an MSPL file describing the set of actions in order

to mitigate the attack
3. The Mitigation Action Service sends the MSPL file to the Security Orchestrator through its

Rest API interface.
4. The Security Orchestrator queries the supported security enablers from the Security

Enablers Provider.
5. The Security Enablers Providers sends a list of supported security enablers which

correspond to the desired security policy as instructed by the Mitigation Action Service.
 6-7-8-9. The Security Orchestrator checks for the status of the underlying infrastructure by
listing the different IoT devices and running VNFs by sending relevant requests to the System
Model.

 10. After identifying the suitable enabler for the desired security policy, the Security
Orchestrator queries the low-level configuration for the relevant enabler from the Policy
Interpreter.

 ммΦ ¢ƘŜ tƻƭƛŎȅ LƴǘŜǊǇǊŜǘŜǊ ǉǳŜǊƛŜǎ ǘƘŜ ŜƴŀōƭŜǊΩǎ ǇƭǳƎƛƴ ŦǊƻƳ ǘƘŜ {ŜŎǳǊƛǘȅ 9ƴŀōƭŜǊǎ tǊƻǾƛŘŜǊΦ

12. The Security Enablers Provider sends the low-level translator plugin to the Policy
Interpreter in order to generate the specific configuration.

13. The Policy Interpreter sends the relevant configuration to the Security Orchestrator.

If the Security Policy is a VNF policy:

 14. The Security Orchestrator deploys the relevant VNF.

 15. The Security Orchestrator configures the relevant VNF using the configuration received
from the Policy Interpreter.

 16. The Security Orchestrator enforces the SDN rules in order to make the VNF operational
(For example: traffic mirroring in case of an IDS, traffic steering in case of a firewall).

 Page 21 of 34

If the Security Policy is an SDN policy:

 17. The SDN controller enforces the relevant rules into the Open Virtual Switch in the IoT
Infrastructure.

If the Security Policy is an IoT control policy:

 18. The Security Orchestrator forwards the action request to the IoT Controller.

 19. The IoT Controller enforces the required action on IoT Devices.

3.6 REST APIS AND BASIC MECHANISMS

For the different interactions, the Security Orchestrator exposes a REST API interface which
enables the following functionalities: MSPL Policy Enforcement and Information about the
underlying infrastructure.

1. MSPL Policy Enforcement: The Security receives queries in order to enforce security policies
ŜƛǘƘŜǊ ŘƛǊŜŎǘƭȅ ŦǊƻƳ ǘƘŜ tƻƭƛŎȅ LƴǘŜǊǇǊŜǘŜǊ ŀǎ ŀ άtǊƻŀŎǘƛǾŜ tƻƭƛŎȅέ ƻǊ ŦǊƻƳ ǘƘŜ wŜŀŎǘƛƻƴ !ƎŜƴǘ ŀǎ
ŀ άwŜŀŎǘƛǾŜ tƻƭƛŎȅέΦ .ƻǘƘ Ŏŀƴ ōŜ ŜƴŦƻǊŎŜŘ ǳǎƛƴƎ ǘƘŜ ŦƻƭƭƻǿƛƴƎ wŜǎǘ ƛƴǘŜǊŦŀŎŜΥ

URL: http://<SecurityOrchestratorIP>/enforce

METHOD: POST

DATA: {

άǇƻƭƛŎȅέΥ ғa{t[ψCL[9ψ/hb¢9b¢ҔΣ

άeƴŀōƭŜǊǎέΥғ[ƛǎǘ ƻŦ {ŜŎǳǊƛǘȅ 9ƴŀōƭŜǊǎҔ

 }

RETURNS: The Security Orchestrator returns a unique request ID that can be used to track
the policy enforcement process.

Optionally, a list of security enabler candidates list can be added as an argument. The IP addresses
if needed would go inside the MSPL.

2. Information about the requests: The Security Orchestrator can provide information regarding
the requests and their current status using the following Rest API interface:

URL: http://<SecurityOrchestratorIP>/info/requests/<req_id>

METHOD: GET

RETURNS: The Security Orchestrator returns the VNF/SDN/IoT details relevant to the
request with id: <req_id>. If no request ID was supplied, it returns the details concerning
all the enforced security policies.

 Page 22 of 34

Sample response:

3. Information about the IoT devices: The Security Orchestrator can provide information
regarding the IoT devices present in the network and their current status using the following Rest
API interface:

URL: http://<SecurityOrchestratorIP>/info/devices/<device_ip>

METHOD: GET

RETURNS: The Security Orchestrator returns the details relevant to the IoT device with IP:
<device_ip>. If no IP address was supplied, it returns the list of all current IoT devices.

Sample response:

 Page 23 of 34

4 USE CASES DESCRIPTION FOR THE SECURITY ORCHESTRATOR
In this section we will present the different initial use cases which aim to show the different
capabilities of the ANASTACIA framework. We will briefly explain the aim of each use case,
followed by the relevant sequence of events in order to mitigate different types of attacks defined
in the document D6.2. [3]

4.1 BMS.2: INSIDER ATTACK ON THE FIRE SUPPRESSION SYSTEM

The main objective of this use-case is the evaluation of ANASTACIA framework to protect the
system against an insider attack and avoid any damage to the building assets. In this use-case, the
attacker exploits the building operations workstation to request the activation of fire alert system
managed by an IoT device.

The following figure shows the main interactions of the Security Orchestrator for a security policy
deployment in a reactive approach. The figure shows the messages exchanged by the ANASTACIA
components in the Orchestration Plane and the Enforcement Plane. The Reaction module is
showed just in order to provide the starting point of the workflow. In this case, the process is
compounded by the following steps:

1. The reaction module sends an MSPL policy as a reaction measure.
2. The Security Orchestrator obtains the list of candidate security enablers in an interaction

with the Security Enabler Provider.
3. The Security Orchestrator obtains the list of deployed IoT-devices in an interaction with the

System Model.
4. The Security Orchestrator obtains the list of running VNFs in an interaction with the System

Model.
5. The Security Orchestrator makes the decision regarding which Security Enabler must be

used in order to enforce the security MSPL policy.
6. The Security Orchestrator requests a policy translation to the Policy Interpreter in order to

get the configuration for the selected security enabler which is Cooja Honeynet for the use
case of BMS.2.

7. The Policy Interpreter performs the translation, using a plugin received in another
interaction with the Security Enabler Provider (not shown in the figure for simplicity).

8. The Policy Interpreter sends the Cooja-Honeynet configuration to the Security
Orchestrator.

9. The Security Orchestrator requests to VNF Controller for the deployment of a Honeynet
with virtual IoT devices using Cooja emulator.

10. The Security Orchestrator requests to SDN Controller for the traffic forwarding from the
real IoT network towards the virtual Honeynet in VNF deployment.

 Page 24 of 34

Figure 10 Sequence diagram for use case BMS.2

4.2 MEC.3: DOS/DDOS ATTACKS USING SMART CAMERAS AND IOT

DEVICES

The MEC.3 use case aims to show how ANASTACIA can cope with one of the most well-known IoT
attacks. Indeed, DoS (Denial of Service) attacks are hindering, until this day, the wide adoption of
IoT. The disruption of services induced by this type or security flaws can be catastrophic, especially
in industrial and health care environments.

Figure 11 Sequence diagram for MEC.3 use case interactions with Security Orchestrator

 Page 25 of 34

In this scenario, the attacker targets an IoT device by flooding the network with ICMP packets,
disrupting its functionalities. After the detection of the attack, the framework goes through the
following sequence of events:

1. The Reaction module generates the MSPL file describing the set of mitigation actions to
be taken in order to patch the security flaw.

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security
Orchestrator.

3. After receiving the desired policy, the Security Orchestrator queries the list of the
filtering security enablers from the Security Enablers Provider.

4. The Security Enablers Provider returns a list containing all the supported security
enablers which can enable traffic filtering.

5. The Security Orchestrator picks the most appropriate enabler depending on the cost and
status of the underlying infrastructure.

6. The Security Orchestrator chooses the OVS-Firewall as a filtering security enabler, then
it queries the low-level configuration which corresponds to the MSPL file. It sends the
relevant request to the Policy Interpreter

7. The Policy Interpreter requests the OVS-Firewall translation plugin.
8. The Security Enablers Provider returns the OVS-Firewall plugin that will be then used by

the Policy interpreter to perform the low-level translation.
9. The Policy Interpreter sends the relevant low-level configuration to the Security

Orchestrator.
10. After gathering all the required inputs for the Enforcement of the security policy, the

Security Orchestrator creates the OVS-Firewall VNF using the NFV Orchestrator.
11. As soon as the VNF is accessible, the Security Orchestrator refines the default

configuration of the VNF to adapt it to the current security threat.
12. As a final step, using SDN networking, the Orchestrator enforces the necessary rules in

the Open Virtual Switches that will alter the default routing mechanisms and make all
the packets go through the newly deployed firewall. This way, only the malicious traffic
is stopped, and all the services provided but the IoT devices are kept.

4.3 BMS.3: REMOTE ATTACK ON THE BUILDING ENERGY MICROGRID

This use case will show how ANASTACIA can cope with a remote attack on the building energy
microgrid. The attack is a SQL injection that targets the backend database server. The MMT
monitoring tool is capable of detecting such threats in order to enable the ANASTACIA mitigation
of such attacks.

 Page 26 of 34

Figure 12 Sequence diagram for the BMS.3 use case

After the detection of the attack, the ANASTACIA framework goes through the following sequence
of events:

1. The Reaction module generates the MSPL file describing the set of mitigation actions to
be taken in order to patch the security flaw.

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security
Orchestrator.

3. After receiving the desired policy, the Security Orchestrator queries the list of the
filtering security enablers from the Security Enablers Provider.

4. The Security Enablers Provider returns a list containing all the supported security
enablers that can enable traffic filtering.

5. The Security Orchestrator picks the most appropriate enabler depending on the cost and
status of the underlying infrastructure.

6. The Security Orchestrator chooses ONOS as a filtering security enabler, then it queries
the low-level configuration which corresponds to the MSPL file. It sends the relevant
request to the Policy Interpreter

7. The Policy Interpreter requests the ONOS policies translation plugin.
8. The Security Enablers Provider returns the ONOS plugin, which will be then used by the

Policy interpreter to perform the low-level translation.
9. The Policy Interpreter sends the relevant low-level configuration to the Security

Orchestrator.
10. After gathering all the required inputs for the Enforcement of the security policy, the

Security Orchestrator, using the SDN driver, instructs the SDN controller to isolate the
malicious traffic on the edge OVS.

 Page 27 of 34

4.4 BMS.4: CASCADE ATTACK ON A MEGATALL BUILDING

BMS.4 use case demonstrates ANASTACIA capability of detecting attack on sensor network by
changing temperature of given set of them and then triggering fake fire and evacuation alarms
causing harm in a tall building infrastructure, panic among personnel and wasted productivity
time. Figure 13 illustrates interactions between Security Orchestrator and other ANASTACIA
components in use case BMS.4. Internal SO interactions have been depicted in section 4.1.

Figure 13 Sequence diagram for the BMS.4 use case

ANASTACIA is able to ŘŜǘŜŎǘ ŀōƴƻǊƳŀƭ Lƻ¢ ŘŜǾƛŎŜ ōŜƘŀǾƛƻǊ ǘƘŀƴƪǎ ǘƻ ǘƘŜ ά5ŀǘŀ !ƴŀƭȅǎƛǎέ
component within the Monitoring Module. From the Security Orchestrator point of view, the
defined mitigation action is to turn off the infected temperature sensor. The security enforcement
process is as follows:

1. The Reaction module generates the MSPL file describing the set of mitigation actions to
be taken in order to patch the security flaw.

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security
Orchestrator.

3. After receiving the desired policy, the Security Orchestrator queries the list of the
security enablers, which can enforce IoT specific mitigation actions for the capability
άLƻ¢ψŎƻƴǘǊƻƭέ.

4. The Security Enablers Provider returns the supported security enablers accordingly. In
ǘƘƛǎ ŎŀǎŜΣ ƛǘ ǊŜǘǳǊƴǎ άLƻ¢ /ƻƴǘǊƻƭlerέΦ

5. Since the Security Orchestrator received only one security enabler in this use case, it
selects this security enabler.

6. The Security Orchestrator then queries the low-level configuration that corresponds to
the MSPL file. It sends the relevant request to the Policy Interpreter.

 Page 28 of 34

7. The Policy Interpreter requests the IoTController policy translation plugin.
8. The Security Enablers Provider returns the IoTController plugin, which will be then used

by the Policy interpreter to perform the low-level translation.
9. The Policy Interpreter sends the relevant low-level configuration to the Security

Orchestrator.
10. After gathering all the required inputs for the Enforcement of the security policy, the

Security Orchestrator enforces the mitigation action through the Rest API interface of
the IoT controller.

5 IMPLEMENTATION OF THE SECURITY ORCHESTRATOR
This section presents the details regarding the implementation of the Security Orchestrator.

5.1 SECURITY ORCHESTRATOR CODE BASE

The Security Orchestrator is divided into 4 main sub-projects: IoT Orchestration, Network
Orchestration, NFV Orchestration and System Model. Each query received via the Rest API
interface is forwarded to the Security Manager that will be responsible for the orchestration part.

Figure 14 depicts the structure of the project.

Figure 14 Structure of the Security Orchestrator Code Base

¶ IoT Orchestration: Contains the libraries that enable the Security Orchestrator to execute
ǊŜƳƻǘŜƭȅ ŀŎǘƛƻƴǎ ƻƴ ǘƘŜ Lƻ¢ ŘŜǾƛŎŜǎ ǘƘǊƻǳƎƘ ǘƘŜ Lƻ¢ ŎƻƴǘǊƻƭƭŜǊΩǎ wŜǎǘ !tL ƛƴǘŜǊŦŀŎŜΦ

¶ Network Orchestration: This subproject is comprised of a library, which adds an extra
abstraction layer on top of the SDN Northbound API, in order to enable SDN management
functionalities that are relevant to policy enforcement, such as traffic isolation, traffic
mirroring, and traffic steering and path creation.

¶ NFV Orchestration: This part of the project takes care of instantiating and configuring
security VNFs using the NFV orchestrator Open Source Mano.

