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PUBLIC SUMMARY 
This deliverable presents the first results of the ANASTACIA Task 3.2 which aims to provide 
efficient orchestration of the SDN, NFV and IoT domains in order to enforce the security policies. It 
plays a major role in the ANASTACIA architecture accounting for it interactions with other 
components of the framework [1].     
      
IoT devices are prone to various security attacks varying from Denial of Service (DoS) to Man-in-
the-Middle attacks which are hindering their wide adoption. In this vein, SDN and NFV represent 
key technologies towards a novel concept of on-demand security countermeasures provisioning 
based on programmability and advanced virtualization technologies.    
 

The Security Orchestrator is responsible for providing on-demand security policy enforcement on 
the IoT domain. This task is performed by taking in charge the transformation of the relevant 
security policies provided by the security policy interpreter into specific enabler configuration. It 
also monitors and supervises the underlying infrastructure for any potential flaws. It supports a 
variety of security capabilities of different categories, namely: SDN security capabilities, NFV 
security capabilities and IoT security controls. 

 

In first report, we will present the different aspects of the Security Orchestrator within the 
ANASTACIA framework relevant to its technologies, strategies, interactions with other 
components and its major role in the use cases integration. 
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1 INTRODUCTION      
This section will introduce this document by enumerating its aims, references, revision history and 
the different acronyms that were used. 

 

1.1 AIMS OF THE DOCUMENT 

¢Ƙƛǎ ŘƻŎǳƳŜƴǘ ƛǎ ǘƘŜ ǎŜŎƻƴŘ ²tо άtƻƭƛŎȅ 9ƴŦƻǊŎŜƳŜƴǘ ŀƴŘ wǳƴ ¢ƛƳŜ 9ƴŀōƭŜǊǎέ ǊŜǇƻǊǘ ǿƘƛŎƘ 
focuses on the development of core enablers for the deployment and implementation phase, 
including the security enforcement manager, the security orchestrator, the virtual resources 
manager and the autonomic prediction and reconfiguration enabler.  

 

More precisely, this deliverable tackles the Task 3.2 within WP3. This task is about the Security 
Orchestrator, which is a centric component of the ANASTACIA architecture. It ensures to deploy 
the necessary security policies either as a reaction to a detected attack or as proactive measures 
set by the users of the framework. To this aim, it employs an intelligent orchestration system that 
makes use of SDN, NFV and IoT controls to mitigate the security flaws. Once a certain security 
policy has been deployed, it stores relevant information about it and make it available for other 
components of the framework. 

 

This document is structured as follows: Section 2 will tackle the relevant concepts to the 
refinement and enforcement process of the high-level security policies, as part of the interaction 
within WP3 and WP4 components. Section 3 will explain the core functionalities of the Security 
Orchestrator, including its main technologies, security capabilities, interactions and what it offers 
to the rest of the framework. In section 4, we will identify the main role of the Security 
Orchestrator in showcasing the ANASTACIA framework thanks to the pre-defined use cases. 
Finally, in section 5, we will further detail the implementation of the Security Orchestrator that 
was used in many of our Proof-of-Concept demos shown in the ANASTACIA plenary meetings. 

1.2 APPLICABLE AND REFERENCE DOCUMENTS 

This document refers to the following documents: 

ǒ ANASTACIA project deliverable D1.3 ς Initial Architecture Design 
ǒ ANASTACIA Grant Agreement N°731558 ς Annex I (Part A) ς Description of Action 
ǒ  ANASTACIA Consortium Agreement v1.0 ς December 6th 2016 
ǒ ANASTACIA deliverable D1.1 ς Holistic Security Context Analysis 
ǒ ANASTACIA deliverable D1.2 ς User-centered Requirement Initial Analysis 
ǒ ANASTACIA deliverable D2.1 ς Policy-based Definition and Policy for Orchestration, initial 

report 
ǒ ANASTACIA deliverable D3.1 - Initial Security Enforcement Manager Report 
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1.3 REVISION HISTORY 
 

Version Date Author Description 

0.1 7-05-2018 Yacine Khettab Initial document structure and contributions 

0.2 14-05-2018 Piotr Sobonski Initial UTRC contributions 

0.3 16-05-2018 Yacine Khettab Content contribution for chapter 2-5 

0.4 18-05-2018 Yacine Khettab Initial D3.2 draft 

0.5 27-06-2018 Laghrissi Abdelquoddouss Final version 

 

1.4 ACRONYMS AND DEFINITIONS 

 

Acronym Meaning 

MSPL Medium-level Security Policy Language 

HSPL High-level Security Policy Language 

IoT Internet of Things 

MANO Management and Orchestration 

NFV Network Function Virtualization  

SDN Software Defined Networking 

MEC Mobile Edge Computing 

OSM Open Source Mano 

ONOS Open Network Operating System 

M2L Medium to Low 

OVS Open Virtual Switch 

SO Security Orchestrator 

DPI Deep Packet Inspection 

IDS Intrusion Detection System 

SEP Security Enforcement Plane 
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2 REFINEMENT OF SECURITY POLICIES FOR ENFORCEMENT 
In the section, we will present the different interactions and mechanisms behind the security policy 
enforcement from the Security Orchestrator point of view. 

2.1 INTERACTIONS WITH POLICY INTERPRETER FOR REFINING SECURITY 

POLICIES 

This section shows the main interactions for a policy-based deployment between the Policy 
Interpreter and the Security Orchestrator. Two approaches are discussed: the proactive approach 
and the reactive approach. In the proactive approach, the security policy can be part of a 
preventive measure. In this case, the administrator decides to deploy it with the aim to prevent 
issues or to establish some default behavior from start-up. On the other hand, the reactive 
approach allows deploying a security policy as part of an automatic countermeasure. 

2.1.1 Proactive approach 

Figure 1 shows the main interactions between the Policy Interpreter and the Security Orchestrator 
for a security policy deployment in a proactive approach. The Policy Editor Tool is shown just in 
order to provide the starting point of the workflow. In this case, the following steps compound the 
process: 

 

Figure 1 Main interactions between the Policy Interpreter and the Security Orchestrator in proactive approach 

1. The system administrator defines a high-level policy (HSPL) through the Policy Editor Tool 
and he/she requests the policy enforcement. 

2. The Policy Interpreter performs the High-level Security Policy Language (HSPL) to Medium-
level Security Policy Language (MSPL) refinement process. This process has been simplified 
in the diagram, but it also interacts with the Security Enabler Provider in order to obtain a 
list of candidate security enablers according on the capabilities. 

3. The Policy Interpreter sends the MSPL and the list of candidate security enablers to the 
Security Orchestrator. 
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4. The Security Orchestrator makes the decision regarding which Security Enabler must be 
used in order to enforce the security policy. 

5. The Security Orchestrator requests a policy translation to the Policy Interpreter in order to 
get the configuration for the selected security enabler from the MSPL policy. 

6. The Policy Interpreter performs the translation, using a plugin received in another 
interaction with the Security Enabler Provider (not shown in the figure for simplicity). 

7. The Policy Interpreter sends the security enabler configuration to the Security 
Orchestrator. 

2.1.2 Reactive approach 

Figure 2 shows the main interactions between the Policy Interpreter and the Security Orchestrator 
for a security policy deployment in a reactive approach. The Reaction process is showed just in 
order to provide the starting point of the workflow. In this case, the process is compounded by the 
following steps: 

 

Figure 2 main interactions between the Policy Interpreter and the Security Orchestrator in reactive approach 

1. The reaction module sends a MSPL policy as a reaction countermeasure. 
2. The Security Orchestrator makes the decision regarding which Security Enabler must be 

used in order to enforce the security policy. The list of candidate security enabler has been 
obtained previously in an interaction with the Security Enabler Provider (not shown in the 
figure for simplicity). 

3.  The Security Orchestrator requests a policy translation to the Policy Interpreter in order to 
get the configuration for the selected security enabler from the MSPL policy. 

4. The Policy Interpreter performs the translation using a plugin received in another 
interaction with the Security Enabler Provider (not shown in the figure for simplicity). 

5. The Policy Interpreter sends the security enabler configuration to the Security 
Orchestrator. 
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2.2 INTERACTIONS WITH SECURITY ENABLER PROVIDER FOR SELECTING THE 

APPROPRIATE SECURITY ENABLERS 

One of the roles of the Security Enabler Provider in the Security Orchestration Plane is to identify 

the security enablers that can provide specific security capabilities, in order to meet the security 

policies requirements. When the security orchestrator component receives the MSPL file from the 

reaction module, it requests the enablers list for the identified capabilities from Security Enabler 

Provider. The component selects the list of the enablers that fit with the sent reaction capability, 

ŀǎ ŀƴ ŜȄŀƳǇƭŜΣ ŦƻǊ ŦƛƭǘŜǊƛƴƎ ŎŀǇŀōƛƭƛǘȅ ǘƘŜ ŜƴŀōƭŜǊǎ Ŏŀƴ ōŜ άhǇŜƴ Ǿ{ǿƛǘŎƘ όh±{ύΣ {ƴƻǊǘΣ LǇ¢ŀōƭŜΣ 

ŜǘŎέΦ ¢Ƙƛǎ ǎŜƭŜŎǘƛƻƴ ƛǎ ŘƻƴŜ ōȅ ǊŜǉǳŜǎǘƛƴƎ ǘƘŜ ά{ŜŎǳǊƛǘȅ 9ƴŀōƭŜǊ wŜǇƻǎƛǘƻǊȅέ ǘƘŜƴ ǘƘŜ ƭƛǎǘ ƻŦ ǘƘŜ 

suitable enablers is selected and sends to the Security Orchestrator where a sub-module in the 

Security Orchestrator called the Resource Planner will select the adequate enabler among the 

received enablers list. This planner has been implemented using python language, Falcon which is 

a bare-metal web API framework for Python, and Gunicorn 'Green Unicorn' which is  Python WSGI 

HTTP Server for UNIX. 

 

 
Figure 3Security Enablers Provider Interactions 
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2.3 SECURITY RESOURCE PLANNING MODULE 

The security resource planning uses the list of the selected enablers returned to the security 
orchestrator by the Security Enabler Provider to decide the more adequate enabler(s) among the 
list to be used for enforcing the security. This selection is done through an Integer Linear 
Programming (ILP) model. The aim of the model is to select the best service (Virtual Network 
Function (VNF)) among the list of enablers selected previously by the selected Security Enabler 
Provider, in order to cope with a security attack and minimize the maximum load nodes (CPU, 
RAM, bandwidth) of the topology. 

 The different VNFs are considered as a set of enablers, each enabler is characterized by its type 
and resources. The security resource planning requests from the SysModel the required topology 
information. The set of topology nodes is also characterized by its type and its resources $R$. The 
goal of the model is minimizing the maximum load nodes to improve provider cost revenue 
(provider energy efficiency goal). Furthermore, we assume that 

·       Multiple services (VNFs) can be allocated on the same node, 

·       A VNF service cannot be split on multiple nodes. 

·       Each node can host multiple services.  

The security Resource Planning Module is implemented as an autonomous plugin that receives a 
list of the enablers and the topology information from the SysModel. Based on this information, 
the resource planner runs the ILP implemented using IBM CPLEX Optimizer engine. It selects the 
needed security enablers, helps to cope with the security attacks, and obtains the nodes where 
these security enablers have to be installed. 

 

2.4 INTERACTIONS WITH THE MONITORING AGENTS 

The Security Orchestrator has the ability to deploy new monitoring agents in runtime if required. 
This might be the result of the enforcement of a security policy or the reaction against a detected 
attack on the Security Enforcement Plane (SEP). In both cases, the Security Orchestrator needs to 
interact with the new instance in order to correctly deploy it, or reconfigure the current instances 
on the SEP. 

2.4.1 MMT-Probe Monitoring Agent 

MMT-Probe is one of the monitoring agents that are integrated in the ANSTACIA Platform. A Deep 
Packet Inspection (DPI) tool that allows capturing packets from the monitored network, extract 
information from them, and test security properties that allow detecting security incidents. 

The capturing capabilities of MMT-Probe are provided by the MMT-DPI library, which makes use 
of the libpcap or DPDK libraries to extract the packets from the network interface. The library 
enables to copy the packets from the network interface to the MMT pipeline for its analysis. The 
whole pipeline is depicted in Figure 4. 
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Figure 4 MMT-Probe General Pipeline 

 

Once a packet is extracted, it is analyzed in the MMT-DPI library. This library can be easily 
extended thanks to his modular structure, through the development of plugins. Each plugin 
implements the dissection rules and the information extraction for a particular network or 
application protocol. Typical examples of these plugins are the implementation of the IP, TCP and 
UDP protocols. In spite of this and since MMT-Probe uses DPI technology to inspect the packet it is 
possible to implement any upper-layer protocol (such as skype or even multimedia protocols) as 
long as they have a fixed and recognizable structure. 

As long as the dissection is performed, the MMT-DPI library extracts the information according to 
the format specified in the plugin. This information is then aggregated and used with two principal 
goals. On one hand, MMT generates a periodical statistics report about the opened connections 
on the network. On the other hand, the extracted information is also fed to the MMT-Security 
library in order to perform further security analysis with it. 

The MMT-Security library is an extensible engine that can be enhanced by the implementation of 
new security rules. Using the information extracted with DPI, MMT-Security tests the security 
properties in order to detect attacks and incidents on the monitored network. The results of such 
evaluations are also reported in security alerts along with the statistics reports aforementioned. 

The two types of reports here described represent the principal output of MMT-Probe. Both 
reports are published in the Kafka-Broker module that notifies the reports to the ATOS XL-SIEM 
module. The ATOS XL-SIEM will correlate these reports with further information coming from 
other sources in order to generate the verdicts about the detected incidents. It is then the XL-SIEM 
tool that transmits the threats detected by MMT-Probe to the Reaction Plane. 
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2.4.1.1    MMT-PROBE AND VNF 
The MMT technology is a Linux-based technology that can be easily integrated into VNF-enabled 
platforms. This flexibility is allowed by the fact that MMT is shipped as a ready-to-deploy .deb 
package, which enables the utilization of the software right after it is being installed. In this sense, 
the MMT software can be delivered in form of Virtual Machine images, ISO disk images, .deb 
packages (to be used with Docker) among others. This flexibility is supported by the fact that the 
SDN controllers usually employ a container or virtualization approach which allows emulating a 
complete Linux environment where MMT can easily be installed. 

 

2.4.1.2 MMT-PROBE CONFIGURATIONS FOR VNF ENVIRONMENTS 
MMT comes with comprehensive set of configurations in order to adapt the processes of sniffing, 
capturing, extraction, security testing and report of the raised alerts. Despite this, the 
configuration options can be classified into two principal groups: 

¶ Resources used by MMT: This group of configurations specifies how MMT should use the 
resources of the machine running the software. It includes: 

Á thread-nb: Indicated the number of threads MMT-Probe will use to process 
packets. 
Á logfile: The location of the log file of MMT. 
Á input-mode: This is the analysis moŘŜ ƻŦ aa¢Φ άhƴƭƛƴŜέ όŘƛǊŜŎǘ ŎŀǇǘǳǊŜ 
ŦǊƻƳ ŀ ƴŜǘǿƻǊƪ ƛƴǘŜǊŦŀŎŜύ ŀƴŘ άƻŦŦƭƛƴŜέ όǇŎŀǇ ŀƴŀƭȅǎƛǎύ ŀǊŜ ǘƘŜ ǾŀƭƛŘ ǾŀƭǳŜǎ 
for this field. 

Á input-ǎƻǳǊŎŜΥ ¢Ƙƛǎ ƛǎ ǘƘŜ ǎƻǳǊŎŜ ƻŦ ǘƘŜ ǇŀŎƪŜǘǎ ǘƻ ŜȄǘǊŀŎǘΦ CƻǊ άƻƴƭƛƴŜέ ƳƻŘŜΣ 
ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ ƛƴǘŜǊŦŀŎŜ ƛǎ ǊŜǉǳƛǊŜŘΦ CƻǊ άƻŦŦƭƛƴŜέ ƳƻŘŜΣ ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ 
pcap file is required. 

¶ MMT Reports: This section includes configurations about the reports generated by MMT. 
The principal options are: 

Á kafka-output: This set of configurations allow publishing the generated 
reports in a Kafka channel. It requires a set of sub configurations. 

Á ŜƴŀōƭŜŘΥ άлέ όŦŀƭǎŜύ ƻǊ άмέ όǘǊǳŜύ ǘƻ ŘƛǎŀōƭŜ ƻǊ ŜƴŀōƭŜ YŀŦƪŀ ƻǳǘǇǳǘΦ 
Á hostname: The hostname of the Kafka server. 
Á port: the port number of the Kafka server. 
Á stats-period: This indicates to MMT that it should generate statistics report 

each X seconds. 
Á session-report report_session: This set of configurations enables or disables 

the reporting of protocols that belong to a session. 
Á event_report: This set of configurations is used to create customized reports 

based on events. Please refer to the MMT Manual for further information 
about this. 

Á condition_report: This set of configurations is used to create customized 
reports based on conditions. Please refer to the MMT Manual for further 
information about this. 

Á security2: This configuration sets the options of the security reports. It is 
composed of the following sub-options: 
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Á thread-nb: Specifies in which thread the security evaluation should be 
performed. 

Á exclude-ǊǳƭŜǎΥ ! ƭƛǎǘ ƻŦ ǘƘŜ ǊǳƭŜǎΩǎ L5ǎ ǘƘŀǘ ŀǊŜ ŜȄŎƭǳŘŜŘ ŦǊom the analysis. 
Á cpu-mem-usage: This set of options configures the periodic CPU and 

memory usage reports. If contains the following options: 
Á enable: Enables or disables these reports. 
Á frequency: Sets the time interval (in seconds) to generate these reports. 

The aforementioned list of options is specified in a text file located in 
/opt/mmt/probe/conf/online.conf. This file can easily be generated on demand and implanted in a 
VNF instance in order to correctly configure the newly deployed DPI module. 

The presented list is not extensive, and it is intended to act as an initial reference of the possible 
configurations of the MMT software. For further reference and an exhaustive list of the available 
options, please refer to the MMT manual provided with this document [2]. 

3 ORCHESTRATION OF SECURITY ENABLERS AND RELEVANT CONTROLS 
In order to accommodate the constraints and heterogeneity of IoT systems, softwarized networks 
seem to be the most compelling solution. Network softwarization is a recent promising trend 
aiming at radically advancing telecommunication industries by embracing cloud computing 
technologies and software models in network services. The main pillars behind this revolution are 
Software Defined Networking (SDN) and Network Function Virtualization (NFV). On one hand, SDN 
introduces a new level of network programming by decoupling control and data plane. A logically 
centralized controller is in charge of supervising the network state and provides rules to the 
network elements for appropriately managing the traffic flows. On the other hand, NFV leverages 
virtualization technologies to deploy network elements as software instances, thus allowing an 
increased level of flexibility and elasticity in service provisioning. Furthermore, NFV can enable 
remarkable reduction in CAPEX/OPEX costs, by replacing dedicated expensive hardware with 
commodity servers able to host software-based network appliances. 

The IoT paradigm is drastically enhancing our quality of life and utilization of resources to make 
things (i.e., home appliances, electronic devices, sensors, etc.) part of the Internet. This paradigm 
opens doors to innovations that will build novel type of interactions among things and humans 
and enables the realization of smart infrastructures, smart cities, etc. Although SDN and NFV are 
two separate paradigms, their joint use can further improve the potential security services offered 
by the network and meet the broad range of increasing requirements imposed by IoT applications. 

In this section, we will present the main concepts used by the Security Orchestrator in order to 
enforce the relevant security policies in the IoT domain. 

 

3.1 SDN NETWORKING 

Software Defined Networking (SDN) is a relatively new paradigm, which aims to decouple the 
control plane and the data plane for reducing the management complexity and allowing external 
ŀǇǇƭƛŎŀǘƛƻƴ ǘƻ ŎƻƴǘǊƻƭ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ōŜƘŀǾƛƻǊΦ {5b ƻŦŦŜǊǎ ƴƻǾŜƭ ŎŀǇŀōƛƭƛǘƛŜǎ ǘƻ ŀŘŀǇǘ, on the fly, 
the network flows according to the dynamic application requests. The three main components of 
SDN networks are switches, controllers, and communication interfaces. 
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Figure 5 SDN Networking Architecture & Management 

 

a) SDN switches: the forwarding of data traffic is the main responsibility of physical and 
virtual SDN switches according to the assigned network configuration. To this aim, appropriate 
rules are instructed by the SDN controller in the flow tables to perform packet forwarding along 
with a wide range of other operations. 

b) SDN controller: the intelligence of an SDN-based network is centralized in its SDN 
controller, which maintains the state of the whole system and decides on the traffic routing by 
updating relevant flow rules on the switches. Its role allows it to have a global vision over the 
network, which makes for the most optimized and dynamic networking decisions. 

c) SDN interfaces: to facilitate programming and management, the communication 
interfaces are fundamental to configure the network behavior. It consists of two main interfaces: 
southbound and northbound. While the first one manages the communication between the SDN 
controller and the SDN switches, the second one is in charge of the interactions between the user 
SDN applications and the SDN controller. 

The adoption of SDN in IoT (SDN-enabled IoT systems) is considered as an essential element in the 
success of the Security Orchestrator. Leveraging the capabilities of SDN  to route, efficiently, the 
traffic and optimize the utilization of the network are key enabling functions to manage the 
massive amounts of data flow in IoT networks and eliminate bottlenecks. This integration can be 
implemented at different levels of the IoT network, such as the access (where the data is 
generated), core and cloud networks (where the data is processed and served), which enables IoT 
traffic management from end-to-end. 

Moreover, SDN can be also leveraged to provide advanced security mechanisms for IoT systems. 
For example, traffic isolation between different tenants, centralized security monitoring using the 
global vision of the network and traffic dropping at the edge, keeping the malicious traffic from 
spreading all over the network. 
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3.2 VIRTUAL NETWORK FUNCTIONS 

Network Function Virtualization (NFV) refers to the adoption of virtualization technologies in 
network environments. Unlike traditional network equipment, NFV decouples the software from 
the hardware, bringing value added features and notable capital and operating expenditures 
gains. The ETSI (European Telecommunications Standards Institute) has been leading the 
standardization of this approach, defining novel architectures, which enable the aforementioned 
advantages. The ETSI NFV architecture identifies three main building blocks: 

a) Virtualization Infrastructure: this layer includes all the hardware and virtualization 
technologies necessary to provide the desired resource abstractions for the deployment of 
Virtualized Network Functions (VNFs). This includes Storage, Computing and Networking resources 
that are usually managed by a cloud platform. 

b) Virtual Network Functions: the core idea of NFV deals with replacing dedicated 
hardware equipment with software-based instances of network functions, i.e., the VNFs. They can 
be deployed and managed over multiple environments, providing scalable and cost-effective 
network functions. 

c) Management and Orchestration: the NFV Management and Orchestration (MANO) 
module interacts with both the infrastructure and VNF layers in the ETSI NFV architecture. It is 
responsible for the management of the global resource allocation which includes: instantiating, 
configuring and monitoring VNFs. 

Introducing virtualized network resources into the IoT ecosystem brings multiple value-added 
features, accounting for their heterogeneity and rapid growth. When coupled with SDN, NFV 
cannot only, provide advanced virtual monitoring tools such as Intrusion Detection Systems (IDSs) 
and Deep Packet Inspectors (DPIs), but also provision, and configure on-demand and scalable 
network security appliances, such as firewalls and authentication systems, in order to cope with 
the attacks detected by the monitoring agents. 

 

3.3 IOT SECURITY CONTROLS 

IoT security controls comprise a set of operations that can be applied over the IoT infrastructure 
through the IoT controller. The IoT controller is in charge of managing the command and control 
over the IoT domain, offering high-level of abstraction operations in order to manage the 
infrastructure independently of the underlying technology. It has been designed aligned with the 
SDN controller philosophy. 
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Figure 6 Different planes and APIs contemplated for the IoT controller architecture 

 

Figure 6 shows the different planes and APIs contemplated for the IoT controller architecture, 
which are introduced below: 

1. Application Plane: In this plane are allocated the applications which require performing 
some kind of control actions over the IoT domain. In this case, the Security Orchestrator 
could be part of this plane in order to carry out the different IoT operations according to 
the security policies. This plane performs the communications with the control plane 
through the Northbound API. 

2. Northbound API: This API provides a high-level of abstraction API which allows receiving 
IoT commands and controls independently of the underlying technology, (e.g. HTTP REST 
API). 

3. Control Plane: This plane is governed by the IoT Controller, which is in charge to receive 
command and controls from the Application plane and then to perform the specified 
operations over the required IoT devices using specific IoT communication protocols 
through the Southbound API. 

4. Southbound API: This API provides the communication between the IoT Controller and the 
IoT devices using specific IoT communication protocols depending on the IoT device 
implementation and requirements. 

5. IoT/CPS Systems Plane: The different IoT devices in the architecture, both physical and 
virtual, comprise this plane. 
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3.4 SECURITY ORCHESTRATOR SYSTEM MODEL 

The System Model is an internal component of the Security Orchestrator which is in charge of 
storing data relevant to the underlying infrastructure and enforced security policies. This data is 
made available to all of the ANASTACIA components in order to further refine the security policies 
and improve the detection mechanisms. Depending on the type of the desired security policy, the 
System Model stores the relevant VNF details, SDN rules, IoT actions and related policies. 

 

 

Figure 7 System Model Data Structure 

As the Security Orchestrator expects to receive an MSPL file, each request with its unique ID is 
mapped to a class depending on the required security capabilities. An MSPL could require actions 
on multiple controllers (e.g., Cooja needs a VM in the OSM and filters in the ONOS). There are 
three capability classes: sdn_orch, nfv_orch and iot_orch. Moreover, the System Module keeps 
track of the existing IoT devices on the IoT domain along with their status. 

ü requests (Security Orchestrator requests class): This class stores the different requests 
received by the Security Orchestrator. Each request has: 

 req_id: is a unique ID to each request generated by the Security Orchestrator. 
 source[user-system]: is ǘƘŜ ǎƻǳǊŎŜ ƻŦ ǘƘŜ ǊŜǉǳŜǎǘΦ Lǘ Ŏŀƴ ōŜ ŜƛǘƘŜǊ άǎȅǎǘŜƳέ ǿƘƛŎƘ 
ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ǊŜǉǳŜǎǘ ŎŀƳŜ ŦǊƻƳ ǘƘŜ wŜŀŎǘƛƻƴ !ƎŜƴǘ ƻŦ !b!{¢!/L!Σ ƻǊ άǳǎŜǊέ 
which means that it came from the Policy Editor Tool as user-designed policy. 

 config: is the unique ID of the MSPL file which relates to the request. 
 type: Ŏŀƴ ōŜ ŜƛǘƘŜǊ άǎŘƴέΣ άƴŦǾέ ƻǊ άƛƻǘέΣ ǿƘƛŎƘ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ǊŜǉǳƛǊŜŘ ŎŀǇŀōƛƭƛǘȅΦ 

This attribute is used to map the requests to the correct capability class. 
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 status: reports the status of the security policy enforcement status. The default 
ǾŀƭǳŜ ƛǎ άǇŜƴŘƛƴƎέ ǿƘƛŎƘ ƛǎ ǎŜǘ ǊƛƎƘǘ ŀŦǘŜǊ ǊŜŎŜƛǾƛƴƎ ǘƘŜ ǊŜǉǳŜǎǘΣ ƛǘ ŎƘŀƴƎŜǎ ǘƻ 
άŀŎǘƛǾŜέ ŀǎ ǎƻƻƴ ŀǎ ǘƘŜ ǇƻƭƛŎȅ Ƙŀǎ ōŜŜƴ ŜƴŦƻǊŎŜŘΦ 

 timestamp: is the time and date of the received request. 
 

ü sdn_orch (SDN orchestration class): This class contains all the details related to the SDN 
configuration, which is required either through a direct SDN policy enforcement, or through 
part of a VNF configuration: 

 rule_id: a unique ID of the injected SDN flow rule. 
 ovs_name: the name of the Open Virtual Switch on which the rule has been 

enforced. 
 req_id*: ǊŜƭŜǾŀƴǘ ǊŜǉǳŜǎǘ L5 ŦǊƻƳ ǘƘŜ άǊŜǉǳŜǎǘǎέ ŎƭŀǎǎΦ 

 

ü nfv_orch (NFV orchestration class): is the class that stores all the information concerning the 
security VNFs created through Open Source Mano. 

 vnf_id: unique ID of the relevant security enabler. 
 ovs_name: name of the OVS on which the VNF is attached. 
 ovs_port: the port ID of the OVS on which the VNF is attached 
 ip_addr: management IP address of the VNF. 
 type: ǘȅǇŜ ƻŦ ǘƘŜ ±bC ό{ƴƻǊǘΣ CƛǊŜǿŀƭƭΧύΦ 
 status [build-config-active]:current status of the VNF (instantiating, configuring, 

active). 
 req_id*: ǊŜƭŜǾŀƴǘ ǊŜǉǳŜǎǘ L5 ŦǊƻƳ ǘƘŜ άǊŜǉǳŜǎǘǎέ ŎƭŀǎǎΦ 
 rule_id*: ǊŜƭŜǾŀƴǘ {5b ǊǳƭŜ L5 ŦǊƻƳ ǘƘŜ άǎŘƴψƻǊŎƘέ ŎƭŀǎǎΦ 

 

ü iot_orch (IoT orchestration class): this class keeps track of all the IoT actions, which were 
taken as mitigation actions due to a certain security policy. 

 action_id: ID of the action to take on an IoT device. 
 action: action to take (turn on/off). 
 req_id*: ǊŜƭŜǾŀƴǘ ǊŜǉǳŜǎǘ L5 ŦǊƻƳ ǘƘŜ άǊŜǉǳŜǎǘǎέ ŎƭŀǎǎΦ 
 ip_addr*: ǊŜƭŜǾŀƴǘ Lt ŀŘŘǊŜǎǎ ƻŦ ǘƘŜ Lƻ¢ ŘŜǾƛŎŜ ŦǊƻƳ ǘƘŜ άƛƻǘψŘŜǾƛŎŜǎέ ŎƭŀǎǎΦ 

 

ü iot_devices (IoT devices class): contains all the information regarding the IoT devices, 
including IP address mapping and status. 

 ip_addr: IPv6 address of the IoT node. 
 name: name of the IoT node (as provided by the user) 
 ovs_name: the open virtual switch that is managing the IoT network. 
 controller_ip: IP address of the IoT controller of this node. 
 status [on-off-authenticated]:current status of the node. 
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3.5 ORCHESTRATION STRATEGIES 

3.5.1 Orchestration Tools 

In order to implement the intelligent orchestration, the Security Orchestrator interacts with three 
key components: 

¶ The IoT controller: Used to enforce IoT-specific mitigation actions, such as IoT devices 
access control, authentication and power on/off. These interactions are done through 
Rest-API to send queries to the IoT controller depending on the security policy provided 
by the MSPL file. 

¶ The NFV MANO: An ETSI-defined framework designed for managing and orchestrating 
resources in the cloud. It is used by the security orchestrator to create and configure a 
wide range of security enablers. It has three main functioning blocks: 

o   NFV Orchestrator: Manages the registration of Network Services (NS) and Virtual 
Network Function (VNF) packages, lifecycle of different network services and 
the resources allocation requests. 

o   VNF Manager: Configures and monitors each VNF after its instantiation. 

o   Virtualized Infrastructure Manager (VIM): Interacts with the compute, network 
and storage resources (clouds) in order to provision relevant VNFs. 

¶ The SDN controller: is accountable for managing network resources and enabling the 
programming of the underlying network. The SDN orchestration is done through the 
ONOS driver. This driver has been developed in order to automate the SDN 
management using one or multiple ONOS SDN controllers. It controls multiple Open 
Virtual Switches (OVS) in order to enable the following functionalities: 

o   Traffic forwarding (steering) to VNFs. 

o   Traffic mirroring to different VNFs. 

o   Traffic dropping. 

o   Bandwidth limitation. 

 

The combined usage of these components enables the security orchestrator to enforce the 
relevant security policies either through direct actions such as: traffic dropping and IoT devices 
power on/off, or more complex actions when it comes to VNFs: 

¶ Provisioning: Creating the appropriate VNF on a chosen VIM (According to the VNF 
application graph) such as: Intrusion Detection SystŜƳǎ όL5{ύ ŀƴŘ CƛǊŜǿŀƭƭǎΧ 

¶ VNF Configuration: Using the MSPL to low level translation, the security orchestrator 
pushes the specific configuration of each VNF (IDS rules, Firewall configuration...) 

¶ Networking Setup: Injecting the relevant SDN flow rules to manage the traffic to be 
analyzed, for example: mirroring the traffic to a monitoring agent or steering the traffic 
through a firewall. 

¶ IoT Security Controls: Enforce IoT security operations through the IoT Controller. 
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Figure 8 shows the general architecture of the Security Orchestrator, which enables its security 
capabilities. 

 

 

Figure 8 Security Orchestrator architecture 

 

3.5.2 Sample Orchestration Scenario 

Figure 9 shows a sequence diagram that describes the overall process of security orchestration 
from the processing to the enforcement. 
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Figure 9 Sequence diagram for Security orchestration (processing and enforcement) 

 

1. Attack generation from the Attacker to the target node. 
2. The Mitigation Action Service generates an MSPL file describing the set of actions in order 

to mitigate the attack 
3. The Mitigation Action Service sends the MSPL file to the Security Orchestrator through its 

Rest API interface. 
4. The Security Orchestrator queries the supported security enablers from the Security 

Enablers Provider. 
5. The Security Enablers Providers sends a list of supported security enablers which 

correspond to the desired security policy as instructed by the Mitigation Action Service. 
     6-7-8-9.   The Security Orchestrator checks for the status of the underlying infrastructure by 
listing the different IoT devices and running VNFs by sending relevant requests to the System 
Model. 

      10. After identifying the suitable enabler for the desired security policy, the Security 
Orchestrator queries the low-level configuration for the relevant enabler from the Policy 
Interpreter. 

 ммΦ ¢ƘŜ tƻƭƛŎȅ LƴǘŜǊǇǊŜǘŜǊ ǉǳŜǊƛŜǎ ǘƘŜ ŜƴŀōƭŜǊΩǎ ǇƭǳƎƛƴ ŦǊƻƳ ǘƘŜ {ŜŎǳǊƛǘȅ 9ƴŀōƭŜǊǎ tǊƻǾƛŘŜǊΦ 

12. The Security Enablers Provider sends the low-level translator plugin to the Policy 
Interpreter in order to generate the specific configuration. 

13. The Policy Interpreter sends the relevant configuration to the Security Orchestrator. 

If the Security Policy is a VNF policy: 

 14. The Security Orchestrator deploys the relevant VNF. 

 15. The Security Orchestrator configures the relevant VNF using the configuration received 
from the Policy Interpreter. 

 16. The Security Orchestrator enforces the SDN rules in order to make the VNF operational 
(For example: traffic mirroring in case of an IDS, traffic steering in case of a firewall). 
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If the Security Policy is an SDN policy: 

 17. The SDN controller enforces the relevant rules into the Open Virtual Switch in the IoT 
Infrastructure. 

If the Security Policy is an IoT control policy: 

 18. The Security Orchestrator forwards the action request to the IoT Controller. 

 19. The IoT Controller enforces the required action on IoT Devices. 

 

3.6 REST APIS AND BASIC MECHANISMS 

For the different interactions, the Security Orchestrator exposes a REST API interface which 
enables the following functionalities: MSPL Policy Enforcement and Information about the 
underlying infrastructure. 

 

1. MSPL Policy Enforcement: The Security receives queries in order to enforce security policies 
ŜƛǘƘŜǊ ŘƛǊŜŎǘƭȅ ŦǊƻƳ ǘƘŜ tƻƭƛŎȅ LƴǘŜǊǇǊŜǘŜǊ ŀǎ ŀ άtǊƻŀŎǘƛǾŜ tƻƭƛŎȅέ ƻǊ ŦǊƻƳ ǘƘŜ wŜŀŎǘƛƻƴ !ƎŜƴǘ ŀǎ 
ŀ άwŜŀŎǘƛǾŜ tƻƭƛŎȅέΦ .ƻǘƘ Ŏŀƴ ōŜ ŜƴŦƻǊŎŜŘ ǳǎƛƴƎ ǘƘŜ ŦƻƭƭƻǿƛƴƎ wŜǎǘ ƛƴǘŜǊŦŀŎŜΥ 

 

URL: http://<SecurityOrchestratorIP>/enforce 

METHOD: POST 

DATA: {  

άǇƻƭƛŎȅέΥ ғa{t[ψCL[9ψ/hb¢9b¢ҔΣ 

άeƴŀōƭŜǊǎέΥғ[ƛǎǘ ƻŦ {ŜŎǳǊƛǘȅ 9ƴŀōƭŜǊǎҔ 

                           } 

 

RETURNS: The Security Orchestrator returns a unique request ID that can be used to track 
the policy enforcement process. 

Optionally, a list of security enabler candidates list can be added as an argument. The IP addresses 
if needed would go inside the MSPL. 

 

2.   Information about the requests: The Security Orchestrator can provide information regarding 
the requests and their current status using the following Rest API interface: 

 

URL: http://<SecurityOrchestratorIP>/info/requests/<req_id> 

METHOD: GET 

RETURNS: The Security Orchestrator returns the VNF/SDN/IoT details relevant to the 
request with id: <req_id>. If no request ID was supplied, it returns the details concerning 
all the enforced security policies. 
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Sample response: 

 
3.   Information about the IoT devices: The Security Orchestrator can provide information 
regarding the IoT devices present in the network and their current status using the following Rest 
API interface: 

URL: http://<SecurityOrchestratorIP>/info/devices/<device_ip> 

METHOD: GET 

RETURNS: The Security Orchestrator returns the details relevant to the IoT device with IP: 
<device_ip>. If no IP address was supplied, it returns the list of all current IoT devices. 

Sample response: 

 

 

  



 

  

 Page 23 of 34 
 

4 USE CASES DESCRIPTION FOR THE SECURITY ORCHESTRATOR 
In this section we will present the different initial use cases which aim to show the different 
capabilities of the ANASTACIA framework. We will briefly explain the aim of each use case, 
followed by the relevant sequence of events in order to mitigate different types of attacks defined 
in the document D6.2. [3] 

4.1 BMS.2: INSIDER ATTACK ON THE FIRE SUPPRESSION SYSTEM 

The main objective of this use-case is the evaluation of ANASTACIA framework to protect the 
system against an insider attack and avoid any damage to the building assets. In this use-case, the 
attacker exploits the building operations workstation to request the activation of fire alert system 
managed by an IoT device.  

The following figure shows the main interactions of the Security Orchestrator for a security policy 
deployment in a reactive approach. The figure shows the messages exchanged by the ANASTACIA 
components in the Orchestration Plane and the Enforcement Plane. The Reaction module is 
showed just in order to provide the starting point of the workflow. In this case, the process is 
compounded by the following steps: 

1. The reaction module sends an MSPL policy as a reaction measure. 
2. The Security Orchestrator obtains the list of candidate security enablers in an interaction 

with the Security Enabler Provider. 
3. The Security Orchestrator obtains the list of deployed IoT-devices in an interaction with the 

System Model. 
4. The Security Orchestrator obtains the list of running VNFs in an interaction with the System 

Model. 
5. The Security Orchestrator makes the decision regarding which Security Enabler must be 

used in order to enforce the security MSPL policy. 
6. The Security Orchestrator requests a policy translation to the Policy Interpreter in order to 

get the configuration for the selected security enabler which is Cooja Honeynet for the use 
case of BMS.2. 

7. The Policy Interpreter performs the translation, using a plugin received in another 
interaction with the Security Enabler Provider (not shown in the figure for simplicity). 

8. The Policy Interpreter sends the Cooja-Honeynet configuration to the Security 
Orchestrator. 

9. The Security Orchestrator requests to VNF Controller for the deployment of a Honeynet 
with virtual IoT devices using Cooja emulator. 

10. The Security Orchestrator requests to SDN Controller for the traffic forwarding from the 
real IoT network towards the virtual Honeynet in VNF deployment. 
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Figure 10 Sequence diagram for use case BMS.2 

4.2 MEC.3: DOS/DDOS ATTACKS USING SMART CAMERAS AND IOT 

DEVICES 

The MEC.3 use case aims to show how ANASTACIA can cope with one of the most well-known IoT 
attacks. Indeed, DoS (Denial of Service) attacks are hindering, until this day, the wide adoption of 
IoT. The disruption of services induced by this type or security flaws can be catastrophic, especially 
in industrial and health care environments. 

 

Figure 11 Sequence diagram for MEC.3 use case interactions with Security Orchestrator 
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In this scenario, the attacker targets an IoT device by flooding the network with ICMP packets, 
disrupting its functionalities. After the detection of the attack, the framework goes through the 
following sequence of events: 

1. The Reaction module generates the MSPL file describing the set of mitigation actions to 
be taken in order to patch the security flaw.  

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security 
Orchestrator. 

3. After receiving the desired policy, the Security Orchestrator queries the list of the 
filtering security enablers from the Security Enablers Provider. 

4. The Security Enablers Provider returns a list containing all the supported security 
enablers which can enable traffic filtering. 

5. The Security Orchestrator picks the most appropriate enabler depending on the cost and 
status of the underlying infrastructure. 

6. The Security Orchestrator chooses the OVS-Firewall as a filtering security enabler, then 
it queries the low-level configuration which corresponds to the MSPL file. It sends the 
relevant request to the Policy Interpreter 

7. The Policy Interpreter requests the OVS-Firewall translation plugin. 
8. The Security Enablers Provider returns the OVS-Firewall plugin that will be then used by 

the Policy interpreter to perform the low-level translation. 
9. The Policy Interpreter sends the relevant low-level configuration to the Security 

Orchestrator. 
10. After gathering all the required inputs for the Enforcement of the security policy, the 

Security Orchestrator creates the OVS-Firewall VNF using the NFV Orchestrator. 
11. As soon as the VNF is accessible, the Security Orchestrator refines the default 

configuration of the VNF to adapt it to the current security threat. 
12. As a final step, using SDN networking, the Orchestrator enforces the necessary rules in 

the Open Virtual Switches that will alter the default routing mechanisms and make all 
the packets go through the newly deployed firewall. This way, only the malicious traffic 
is stopped, and all the services provided but the IoT devices are kept. 

 

4.3 BMS.3:  REMOTE ATTACK ON THE BUILDING ENERGY MICROGRID 

This use case will show how ANASTACIA can cope with a remote attack on the building energy 
microgrid. The attack is a SQL injection that targets the backend database server. The MMT 
monitoring tool is capable of detecting such threats in order to enable the ANASTACIA mitigation 
of such attacks. 
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Figure 12 Sequence diagram for the BMS.3 use case 

After the detection of the attack, the ANASTACIA framework goes through the following sequence 
of events: 

1. The Reaction module generates the MSPL file describing the set of mitigation actions to 
be taken in order to patch the security flaw.  

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security 
Orchestrator. 

3. After receiving the desired policy, the Security Orchestrator queries the list of the 
filtering security enablers from the Security Enablers Provider. 

4. The Security Enablers Provider returns a list containing all the supported security 
enablers that can enable traffic filtering. 

5. The Security Orchestrator picks the most appropriate enabler depending on the cost and 
status of the underlying infrastructure. 

6. The Security Orchestrator chooses ONOS as a filtering security enabler, then it queries 
the low-level configuration which corresponds to the MSPL file. It sends the relevant 
request to the Policy Interpreter 

7. The Policy Interpreter requests the ONOS policies translation plugin. 
8. The Security Enablers Provider returns the ONOS plugin, which will be then used by the 

Policy interpreter to perform the low-level translation. 
9. The Policy Interpreter sends the relevant low-level configuration to the Security 

Orchestrator. 
10. After gathering all the required inputs for the Enforcement of the security policy, the 

Security Orchestrator, using the SDN driver, instructs the SDN controller to isolate the 
malicious traffic on the edge OVS. 
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4.4 BMS.4: CASCADE ATTACK ON A MEGATALL BUILDING 

BMS.4 use case demonstrates ANASTACIA capability of detecting attack on sensor network by 
changing temperature of given set of them and then triggering fake fire and evacuation alarms 
causing harm in a tall building infrastructure, panic among personnel and wasted productivity 
time. Figure 13 illustrates interactions between Security Orchestrator and other ANASTACIA 
components in use case BMS.4. Internal SO interactions have been depicted in section 4.1. 

 

Figure 13 Sequence diagram for the BMS.4 use case 

ANASTACIA is able to ŘŜǘŜŎǘ ŀōƴƻǊƳŀƭ Lƻ¢ ŘŜǾƛŎŜ ōŜƘŀǾƛƻǊ ǘƘŀƴƪǎ ǘƻ ǘƘŜ ά5ŀǘŀ !ƴŀƭȅǎƛǎέ 
component within the Monitoring Module. From the Security Orchestrator point of view, the 
defined mitigation action is to turn off the infected temperature sensor. The security enforcement 
process is as follows: 

1. The Reaction module generates the MSPL file describing the set of mitigation actions to 
be taken in order to patch the security flaw.  

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security 
Orchestrator. 

3. After receiving the desired policy, the Security Orchestrator queries the list of the 
security enablers, which can enforce IoT specific mitigation actions for the capability 
άLƻ¢ψŎƻƴǘǊƻƭέ. 

4. The Security Enablers Provider returns the supported security enablers accordingly. In 
ǘƘƛǎ ŎŀǎŜΣ ƛǘ ǊŜǘǳǊƴǎ άLƻ¢ /ƻƴǘǊƻƭlerέΦ 

5. Since the Security Orchestrator received only one security enabler in this use case, it 
selects this security enabler. 

6. The Security Orchestrator then queries the low-level configuration that corresponds to 
the MSPL file. It sends the relevant request to the Policy Interpreter. 
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7. The Policy Interpreter requests the IoTController policy translation plugin. 
8. The Security Enablers Provider returns the IoTController plugin, which will be then used 

by the Policy interpreter to perform the low-level translation. 
9. The Policy Interpreter sends the relevant low-level configuration to the Security 

Orchestrator. 
10. After gathering all the required inputs for the Enforcement of the security policy, the 

Security Orchestrator enforces the mitigation action through the Rest API interface of 
the IoT controller. 

 

5 IMPLEMENTATION OF THE SECURITY ORCHESTRATOR 
This section presents the details regarding the implementation of the Security Orchestrator. 

5.1 SECURITY ORCHESTRATOR CODE BASE   

The Security Orchestrator is divided into 4 main sub-projects: IoT Orchestration, Network 
Orchestration, NFV Orchestration and System Model. Each query received via the Rest API 
interface is forwarded to the Security Manager that will be responsible for the orchestration part. 

Figure 14 depicts the structure of the project. 

 

Figure 14 Structure of the Security Orchestrator Code Base 

 

¶ IoT Orchestration: Contains the libraries that enable the Security Orchestrator to execute 
ǊŜƳƻǘŜƭȅ ŀŎǘƛƻƴǎ ƻƴ ǘƘŜ Lƻ¢ ŘŜǾƛŎŜǎ ǘƘǊƻǳƎƘ ǘƘŜ Lƻ¢ ŎƻƴǘǊƻƭƭŜǊΩǎ wŜǎǘ !tL ƛƴǘŜǊŦŀŎŜΦ 

¶ Network Orchestration: This subproject is comprised of a library, which adds an extra 
abstraction layer on top of the SDN Northbound API, in order to enable SDN management 
functionalities that are relevant to policy enforcement, such as traffic isolation, traffic 
mirroring, and traffic steering and path creation. 

¶ NFV Orchestration: This part of the project takes care of instantiating and configuring 
security VNFs using the NFV orchestrator Open Source Mano. 












