\ /3
CANASTACIA

Achvanced Networked Agents for Security and Trust Assessment in CPSAoT Architectures

D3.2

Initial Security Orchestrator
Report

This deliverable presents the first results of the ANASTACIA Task 3.2
which aims to provide efficient orchestration of the SDN, NFV and loT
domains in order to enforce the security policies.

Distribution level | PU
Contractual date| 30.062013 [M18]
Delivery date| 02.07.2018 [M D]
WP / Task| WP3/T3.2
WP Leaderl AALTO

Authors | T. Taleby. Khettalh A. LaghrisgAALTO),
D.Rivera (MONT),.Rarin Pérez (ODINS),
J Bernal, AMolina (UMU),

DBelabed (THALES),

A.Mady, PSobonski, DMehta (UTRC),

ECProject Officer| Carmen Ifrim
carmen.ifrim@ec.europa.eu

Project Coordinator| SoftecoSismatSpA

Stefano Bianchi

Via De Marini 1, 16149 Genogdtaly
+39 0106026368
stefano.bianchi@softeco.it

Project website| www.anastacigh2020.eu

ANASTACIA has received funding fromahdzN2 LIS I et
Horizon 2020 research and innovation progranuméer Grant Agreement N 73155 % -
and from the Swiss State Secretariat for Eation, Research and Innovati ¥ " Pl

¢KAd R20dzySyid 2yteée NBTFt SO

The European Commission is not responsible for any use that may be madendbth@ation it contains.

mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/

Table of contents

PUBLIC SUMMARY. ..ottt e e e e e e e et ettt bbb s e e e e e e e e eeeeete bbb e e eeeaeeeeeennes 3
A [o1 (o To (U Tt 1o o IO PP PERTPPPPY”
1.1 AIMS Of the QOCUMENL........eiiiiiieee e e e e e e e e e 4
1.2 Applicable and refereNCBOCUMENLS..............ooiiiiiiii e 4
R T S Lo T (o] o T 11 (o] 1Y 2 PRSP 5
1.4 Acronyms and DefiNItIONS..........ooooiiii i a e e e e e e e e e e 5

2 Refinement of secuny policies for enforcement............cccooooe e 6
2.1 Interactions with Policy Interpreter for refining security poliCies...........cccccvvvivieeviereeeeeeenenns. 6
21.1 Proactive apprOaChL.........ccoci i e e e e e e e e e e e e e —————————— 6
A S oY o AV T=T o] o] (0T T o O ORPRPPRY 4

2.2 Interactions with Security Enabler Provider for selecting the appropriate security enablers8
2.3 Security Resource Planning MOUIE..............oooiiiiiiii e e e e e e e e e e e e 9
2.4 Interactions with the MONITONNG AQENTS.........oouiiiiiiie e 9
2.4.1 MMTProbe MONItOrNG AGENL........uuiiiiieiiiiiiii et r e e s s r e e e e e reeeeeeaanes 9

3 Orchestration of security enablers and relevant CONLQLS............uuuevviiiiiiiieiiiiiiiiieeeeeeeeeeeeeeeee, 12
3.1 SDN NEIWOTKING. ...ttt e e e e e e e r e e e e e st r e e e e e e nnnereeeeeas 12
3.2 Virtual NetWOrkK FUNCHONS ..ottt e e s e e e et n e e e e e e e annes 14
3.3 10T SECUILY CONTIOIS. ...cciiiiiiiitiiie e e e e e e e e e s e e e ns 14
3.4 Security Orchestrator System MOGEL...........ouuiiiiiiiii e 16
3.5 OrChestration StralEQIES.couuuiiiiiee ettt e s e e e s re e e e e e e anneees 18
3.5. 1 OrChestration TOIS.......eiiii ittt e e e e e e e s s e e e e e e e ane 18
3.5.2 Sample Orchestration SCENAMID.........cciiiuiiiiiie et e e e e e e 19

3.6 REST APIs and BasiC MECHANISIMS.........cccoiiiiiiiiiiie e 21

4 Use cases description for the Security OrchestratQr.............coooiviiiiiiiiiiiiie e 23
4.1 BMS.2: Insider attack on the fire SUPPressionN SYSteM.........ccccviiiiiieeeiiiiiie e 23
4.2 MEC.3: DoS/DDoS attacks using smart cameras and [0T deviCes..........ccccvvueeeeiiineennnne 24
4.3 BMS.3: Remote attack on the building energy microgrid............ccocvveiiriiieiniiieeiniieeee 25
4.4 BMS.4: Cascade attack on a megatall building.............coooiiiiiiiiii e 27

5 Implementation of the Security OrCheStratar............c.cooiiiiiiiiiiiiie e 28
5.1 Searity Orchestrator COOE BaSE..........ccocuuiiiiiiiiieiiiiie et 28
5.2 OPEN SOUIMCE MEBNQ.......uuutiiiiiiiiieieeeie ettt e e e e e e e e et e e a e e ereeeeeees 29
5.3 ONOS SDN CONLIOILELeiiiiiiieeiiie ettt e et e e e s e e e e annneeas 29
5.4 10T CONOIEL....ciiiiiiiie ettt e e e e s 30

Pagel of 34

v
& astacn

(ST o] o (o] [§ 13 o] o 1T AT 32

A =] (=] (=] (o1 ST 33

Index of fiqures

Figure 1 Main interactions between the Policy Interpreter and the Security Orchestrator in proactive

=T 0] 01 {0 - T o 1P PRPEPRR 6
Figure 2 main interactions between the Policy Interpreter and the Security Orchestrator in reactive
=T 0] 01 {0 - T o 1 PPPPPPPPRRY 4
Figure 3Security Enablers Provider INteraCtions..........c.ovvviiiiieiiiee e 8
Figure 4 MMTProbe Genial PIPEIINE.........c.cce e 10
Figure 5 SDN Networking Architecture & Management............couiiuriirieeerniiiiiiiee e 13
Figure 6 Different planes and APIs contemplated for the I0T controller architecture....................... 15
Figure 7 System Model Data SITUCTULE.........cooiiiiiiiiiiiee e e e e e e e e e e e e s annes 16
Figure 8 Securit@rchestrator arChiteCIUIE.coiiiiiii i 19
Figure 9 Sequence diagram for Security orchestration (processing and enforcement).................... 20
Figure 10 Sequence diagram for use Case BMS.2.........oooiiiiiiiiiiiiiiieece e 24
Figure 11 Sequence diagram for MEC.3 use case interactions with Security Orchestratar............. 24
Figure 12 Sequence diagram for the BMS.3 USE.CASE.........uuuuiiiiiiiiiriiiieee it 26
Figure 13 Sequence diagram for the BMSBIQESE...........cc.uuiiiiiieiiiiiieieeee et 27
Figure 14 Structure of the Security Orchestrator Code Base...........ccuvvveeeiiiiiiiiieeieieieeee e 28
Figure 150verview of Open Source Mano COMPONENLS.cuiieiiiiirieiieeeeeiiiieieeeeeeeasnrreeeraeessannneeees 29
Figue 16 SDN TOPOIOGY VIBW.....uueiiieieiiiiiiiiiee e e sttt e e e ettt e e e e e e e st e e e e e e annaabe e e e e e e e snsnneeeeeeeaane 30
Figure 17 10T controller implementation €lemMEeNtS............uuviieiiiiiiiiiiiie e 30
Figure 18 Northbound API JSON iNPUt @XamMPIE........ceiiiiiiiiiiiieee e 31

Page2 of 34

v
& astacn

PUBLIGUMMARY

This deliverable presents the first results of the ANASTACIA Task 3.2 which aims to provide
efficient orchestration of the SDN, NFV and IoT domains in order to enforsetueity policies. It
plays a major role in the ANASTACIA architecture accounting for it interactions with other
components of the frameworKL].

IoT devices are prone to various security attacks varying from Denial of Service (DoS)ite Man
the-Middle attacks which ardindering their wide adoption. In this vein, SDN and NFV represent
key technologies towards a novel concept ofdemand securitgountermeasures provisioning
based on programmability and advanced virtualization technologies.

The Security Orchestrator is responsible for providingdemand security policy enforcement on

the IoT domain. This task is performed by taking in chahgettansformation of the relevant
security policies provided by the security policy interpreter into specific enabler configuration. It
also monitors and supervises the underlying infrastructure for any potential flaws. It supports a
variety of security gaabilities of different categories, namely: SDN security capabilities, NFV
security capabilities and I0T security controls.

In first report, we will present the different aspects of the Security Orchestrator within the
ANASTACIA framework relevant to itechnologies, strategies, interactions with other
components and its major role in the use cases integration.

Page3 of 34

v
& astacn

1 INTRODUCTION

This section will introduce this document by enumerating its aims, references, revision history and
the different acronyms thatvere used.

1.1 AIMS OF THE DOCUMENT

¢tKA&d R2O0dzySyid ArAa GKS aSO2yR 2to at2fA0e 9yTF2
focuses on the development of core enablers for the deployment and implementation phase,
including the security enforcement manager, the security orchestrator, thesalirtesources
manager and the autonomic prediction and reconfiguration enabler.

More precisely, this deliverable tackles the Task 3.2 within WP3. This task is about the Security
Orchestrator, whichs a centric component of the ANASTACIA architecture. It ensures to deploy
the necessary security policies either as a reaction to a deteat@tk or as proactive measures

set by the users of the framework. To this aim, it employs an intelligent onct&st system that

makes use of SDN, NFV and IoT controls to mitigate the security flaws. Once a certain security
policy has been deployed, it stores relevant information about it and make it available for other
components of the framework.

This documentis structured as follows: Section 2 will tackle thelevant concepts to the
refinement and enforcement process of timggh-level security policies, as part of the interaction
within WP3 and WP4 components. Section 3 will explain the core functionalitige GSecurity
Orchestrator, including its main technologies, security capabilities, interactions and what it offers
to the rest of the framework. In section 4, we will identify the main role of the Security
Orchestrator in showcasing the ANASTACIA framlevtlbanks to the predefined use cases.
Finally, in section 5, we will further detail the implementation of the Secuitghestrator that

was used in many of ourdof-of-Conceptdemos shown ithe ANASTACI@lenary meetings.

1.2 APPLICABLE AND REREREDOQUENTS

This document refers to the following documents:

ANASTACIA project deliverable D4 I8itial Architecture Design

ANASTACIA Grant Agreement N°7316B8nex | (Part AQ Description of Action
ANASTACIA Consortium Agreement ylD@cember 6th 2016

ANASTACIA deliverable D&.Holistic Security Context Analysis

ANASTACIA deliverable D& @sercentered Requirement Initial Analysis

ANASTACIA deliverable D2 Rolicybased Definition and Policy for Orchestration, initial
report

ANASTACIA deliverabl8.D- Initial Security Enforcement Manager Report

O¢ O¢ O¢ O¢ O¢ O«

(@]

Page4 of 34

v
& stacn

1.3 REVISIONHISTORY

Version Date Author Description

0.1 7-05-2018 YacineKhettab Initial document structure and contributions
0.2 14-05-2018 Piotr Sobonski Initial UTRC contributions

0.3 16052018 YacineKhettab Content contribution for chapter-8

0.4 18052018 YacineKhettab Initial D3.2 draft

0.5 27-06-2018 LaghrissAbdelquoddouss Final version

1.4 ACRONYMS ANDEFINITIONS

Acronym Meaning

MSPL Medium-level Security Policy Language
HSPL Highlevel Security Policy Language
loT Internet of Things

MANO Management and Orchestration
NFV Network Function Virtualization
SDN Software Defined Networking

MEC Mobile Edge Computing

OSM Open Source Mano

ONOS Open Network Operating System
M2L Medium to Low

(O)VS) Open Virtual Switch

SO Security Orchestrator

DPI Deep Packet Inspection

IDS Intrusion Detection System

SEP Security Enforcement Plane

Page5 of 34

v
& astacn

2 REFINEMENT OF SECYRRDLICIES FOR ENEERENT

In the section, we will present the different interactions and mechanisms behind the security policy
enforcementfrom the Security Orchestrator point of view.

2.1 INTERACTIONS WITHOLICY INTERPRETER FOR REBENSECURITY
POLICIES

This section shows the main interactions for a pebeged deployment between the Policy
Interpreter and the Security Orchestratofwo approachesare discussedhe proactive approach
and the reactiveapproach In the proactive approach, the security policy can be part of a
preventive measure. In this casthe administrator decides to deploy it with the aim to prevent
issues or to estabish some default behavior from stamp. On the other hand, the reactive
approach allowsleployinga security policy as part of an automatic countermeasure.

2.1.1Proactive approach

Figurel shows the main interactions between the Policy Interpreter and the Security Orchestrator
for a security policy deployment in a proactive approach. The Policy Editor Tool ia glsdvin
order to provide the starting point of the workflow. In this case, thibowing steps compound the
process

Policy Editor Tool I Policy Interpreter I Security Orchestrator I

1 enforce(HSPL)

| |

| |
= i
| 2 refine(HSPL) :
< :
| |
I 3 enforce(MSPL+List<Enabler=) 1
|

|

f ol

4 decides(MSPL List<Enabler=)

' _5 getEnablerConf(MSPL, enabler)
T

6 translate(MSPL,enabler)

I
i
T
I
i
i
I
i
i
i
i
i
i
I
i
i
I
i
i
I
i
i
i
i T
i -

|
! 7 enabler_configuration
|

Policy Editor Tool I Policy Interpreter I Security Orchestrator I

Figurel Main interactions between the Policy Interpreter and the Security Orchestrator in proactive approach

1. The system administrator definestagh-level policy (HSPL) through the Policy Editor Tool
and hekhe requests the policy enforcement.

2. The Policy Interpreter performs the Hidgvel Security Policy Language (HSPL) to Medium
level Security Policy LanguageSRL) refinement process. This process has been simplified
in the diagram, but it also interacts with the Security Enabler Provider in order to obtain a
list of candidate security enablers according on the capabilities.

3. The Policy Interpreter sends the MS#&id the list of candidate security enablers to the
Security Orchestrator.

Page6 of 34

v
& stacn

4. The Security Orchestrator makes the decision regarding which Security Enabler must be
used in order to enforce the security policy.

5. The Security Orchestrator requests a pot@nslation to the Policy Interpreter in order to
get the configuration for the selected security enabler from the MSPL policy.

6. The Policy Interpreter performs the translation, using a plugin received in another
interaction with the Security Enabler Progidnot shown in the figure for simplicity).

7. The Policy Interpreter sends the security enabler configuration to the Security
Orchestrator.

2.1.2Reactive approach

Figure2 shows the main interactions between the Policy Interpreter and the Security Orchestrator
for a security policy deployment in a reactive approach. The Reaptmressis showed just in
orderto provide the starting point of the workflow. In this case, the process is compounded by the
following steps:

Reaction I Security Orchestrator l Policy Interpreter l

1 react(MSPL)

I I

I I
| i
| 2 decides(MSPL List<Enabler=) |
<1 |
I

|

I

1

I

|

|
| 3 getEnablerConf(MSPL, enabler)

=
4 translate(MSPL,enabler)

1
5 enabler_configuration !

;
|
|
|
|
<

Reaction I Security Orchestrator I Policy Interpreter I

Figure2 main interactions between the Policy Interpreter and the Security Orchestrator in reactive approach

=

The readbn module sends a MSPL policy as a reactmmtemeasure.

2. The Security Orchestrator makes the decision regarding which Security Enabler must be
used in order to enforce the security policy. The list of candidate security enabler has been
obtained previaisly in an interaction with the Security Enabler Provider (not shown in the
figure for simplicity).

3. The Security Orchestrator requests a policy translation to the Policy Interpreter in order to
get the configuration for the selected security enabler frdra MSPL policy.

4. The Policy Interpreter performs the translation using a plugin received in another
interaction with the Security Enabler Provider (not shown in the figure for simplicity).

5. The Policy Interpreter sends the security enabler configuration thhe Security

Orchestrator.

Page7 of 34

v
& stacn

2.2 INTERACTIONS WITHCURITENABLERPROVIDER FOR SELEGTINE
APPROPRIATE SECUENAXBLERS

One of the roles of the Security Enabler Provider in the Security Orchestration Plane is to identify
the security enablers that can priole specific security capabilities, in order to meet the security
policies requirements. When the security orchestrator component receives the MSPL file from the
reaction module, it requests the enablers list for the identified capabilities from Secunatlyl&t

Provider. The component selects the list of the enablers that fit with the sent reaction capability,
Fa +y SEFYLX ST F2NJ FAEtGSNAy3a OFLIoAtAGE GKS
SG0¢d ¢KAA aStSOGA2Yy dBA RRySylo@t SNBIj WS A NV (B2 NE
suitable enablers is selected and sends to the Security Orchestrator where-racslute in the

Security Orchestrator called the Resoufdanner will select the adequate enabler among the
receivedenablers list. Thiplannerhasbeen impeémented using python languaggalconwhich is

abare-metal web API frameworfor Python and Gunicorn '‘Green Unicormvhich is Python WSGI
HTTP Server for UNIX.

Enablers
Repo
Reaction

Policy Interpreter

1 HSPL->MSPL getEnablerPlugin(Snort Security Enabler

Provider

S5PL-> e
Mitigation chosen: MSPL->Enabler
Filtering

5 getEnablerConf(MSPL,Snort)

Security Orchestrator

The security Resource
Planning
getSysInformation() selectEnabler(
2 Sysinofrmation, listEnablers)

Sys P - .
enforce(configuration)

Figure3Security Enables Provider Interactions

3 getEnablerList(Filtering)

(eTa=1d I’ SAQ’ 3oushsipo|qeuy 4=

Page8 of 34

v
& astacn

2.3 SECURITIRESOURCRBR.ANNING MODULE

The security resource planningsesthe list of the selected enablers returned to the security
orchestrator by the Security Enabler Provider to decide the more adequate enabler(s) among the
list to be usedfor enforang the security. This selection is done through an Integer Linear
Programning (LB model. The aim of the model is to select the best service (Virtual Network
Function (VNF)) among the list of enablers selected previously by the selected Security Enabler
Provider, inorder to cope with a security attack and minimize the maximioad nodes CPU,

RAM bandwidth) ofthe topology.

The different VNFs are considered as a set of enablers, each enabler is characterized by its type
and resources. The security resource planning requests from the SysModel the required topology
information. The set of topology nodes is also characterized by its type and its resources R. The
goal of the model igninimizingthe maximum load nodes to improve provider cost revenue
(provider energy efficiency goal). Furthermore, we assume that

Multipleservices (VNFs) can be allocated on the same node,
A VNF service cannot be split on multiple nodes.
Each node can host multiple services.

The security Resource Planning Module is implemented as an autonomous plugin that receives a
list of the enablers and the topology information from the SysModBalsedon this information,

the resource planneruns the ILPimplemented using IBMCPLEXOptimizer enginelt selectsthe
neededsecurity enablershelps tocope with the security attack and obtainsthe nodes where
thesesecurity enablers have to be installed.

2.4 INTERACTIONS WITH TMENITORINBGENTS

The Security Orchestrator has the ability to deploy new monitoring agents in runtime if required.
This might be the result of the enforcementafecurity policy or the reaction against a detected
attack on the Security Enforcement Plane (SEP). In both cases, the Security Orchestrator needs to
interact with the new instance in order to correctly deploy it, or reconfigure the current instances
onthe SEP.

2.4.1MMT-Probe Monitoring Agent

MMT-Probe is one of the monitoring agents thare integrated in the ANSTACIA PlatfornDeep
Packet Inspection (DPI) tool that allows capturing packets from the monitored network, extract
information from them and test security propertiethat allow detecting security incidents.

The capturing capabilities of MMMHrobe are provided by the MMDPI library, which makes use
of the libpcap or DPDK libraries to extract the packets from the network interface. Theylibrar
enables tocopy the packets from the network interface to the MMT pipeline foratgalysis The
whole pipeline is depicted iRigure 4.

Page9 of 34

v
& stacn

MMT Probe

Raw data 3 [0} E 8

© o] g

802.3 (eth) 5 <) MMT_DF;LraIy s
€ o =

IP > 2 - £

£ £

UDP/TCP s = s
w0 G J
J m

g—Secu rity
library

Figure4 MMT-Probe General Pipeline

Once a packet is extracted, it is armly in the MMTDPI library. This library can be easily
extended thanks to his modular structure, through the development of plugins. Each plugin
implements the dissection rules and the information extraction for a particular network or
application protocolTypical examples of these plugins are the implementation of the IP, TCP and
UDP protocols. In spite tiiisand since MMiProbe uses DPI technology to inspect the packet it is
possible to implement any uppédayer protocol (such as skype or even multingegrotocols) as

long as they have a fixehdrecognizable structure.

As long as the dissection is performed, the MBIFI library extracts the information according to

the format specified in the plugin. This information is then aggregated and used waitprincipal

goals. On one hand, MMT generates a periodical statistics report about the opened connections
on the network. On the othehand the extracted information is also fed to the MMsEcurity
library in order to perform further security analysis kvit.

The MMTFSecurity library is an extensible engine that can be enhanced by the implementation of
new security rules. Using the information extracted with DPI, MBBcurity tests the security
properties in order to detect attacks and incidents on thentored network. The results of such
evaluations are also reported in security alerts along with the statistics reports aforementioned.

The two types of reports here described represent the principal output of NRYbbe. Both
reports are published in th&afkaBrokermodule that notifies the reportsto the ATOXLSIEM
module. TheATOSXL-SIEMwill correlate these reports with further information coming from
other sources in order to generate the verdicts about the detected incidents. It is then tB&EXL
tool that transmits thethreatsdetected byMMT-Probe to the Reaction Plane

PagelOof 34

v
& stacn

2.4.1.1 MMT-PrROBE ANWNF

The MMT technology is a Lintased technology that can be €ly integrated into VNEnabled
platforms. This flexibility is allowed by the fact that MMT is shipped as a +teadgploy .deb
package, which enables the utilization of thaftware right after it is being installed. In this sense,
the MMT software can be delivered in form of Virtual Machine images, ISO disk images, .deb
packages (to be used with Docker) among others. This flexibility is supported by the fact that the
SDN cotrollers usuallyemploy a container or virtualization approach which allows emulating a
complete Linux environment where MMT can easily be installed.

2.4.1.2MMT-PROBE CONFIGURATIGIRV NFENVIRONMENTS

MMT comes with comprehensive set of configuratieam®rder to adapt the processes of sniffing,
capturing, extraction, security testing and report of the raised alerts. Despite this, the
configuration options can be classified into two principal groups:

1 Resources used by MMThis group of configurationspecifieshow MMT should use the
resources of the machine running the software. It includes:
A threadnb: Indicated the number of threads MMHATobe will use to process
packets.
A logfile: The location of the log file of MMT.
A input-mode: This is the analysis R& 2
FNRY | ySG@g2N] AydS
for this field.
A input-d 2 dzZNOSY ¢
GKS yIFrYS 27
pcap file is required.
1 MMT ReportsThis section includes configurations about the reports generated by MMT.
The principal options are:
A kafkaoutput: This set of configurations allow publishing the generated
reports in a Kafkahannel. It requires a set of sub configurations.

aat® ahyfAySé
I OS0 YR a2F7FfA

z
g

A

iKS a2dzNDS 2F (KS

a
0 SNBEOY2RSE I NI IKEA YF

Aa
Ay

KA &
4dKS

A SylrofSRY dané O6FFHfasSo 2N amé O6GNHS0O 0

A hostname: The hostname of the Kafka server.

A port: the port number of the Kafka server.

A statsperiod: This indicateto MMT that it shoull generate statistics report
each X seconds.

A sessiorreport report_session: This set of configurations enables or disables
the reporting of protocols that belong to a session.

A event_report: This set of configurations is used to create customized reports

based on events. Please refer to the MMT Manual for further information

about this.

condition_report: This set of configurations is used to create customized

reports based on conditions. Please refer to the MMT Manual for further

information about this.

A secuity2: This configuration sets the options of the security reports. It is
composed of the following subptions:

Pagellof 34

v
& stacn

A threadnb: Specifies in which thread the security evaluation should be
performed.

A excludeNdzt Say ! fA&0 2F ({KSomNiizandlgsifa L5 a

A cpumemusage: This set of options configures the periodic CPU and

memory usage reports. If contains the following options:
A enable: Enables or disables these reports.
A frequency: Sets the time interval (in seconds) to generate these reports

The aforementioned list of options is specified in a text file located in
/lopt/mmt/probe/conf/online.conf. This file can easily be generated on demand and implanted in a
VNF instance in order to correctly configure the newly deployed DPI module.

The pregnted list is not extensive, and it is intended to act as an initial reference of the possible
configurations of the MMT software. For further reference and an exhaustive list of the available
options, please refer to the MMT manual provided with this doemt [2].

3 ORCHESTRATION OF SHTY ENABLERS ANDIRREANT CONTROLS

In order to accommodate the constraints and heterogeneity of 10T systems, softwarized networks
seem to be the most compelling solution. Network softwarization is a recent promising trend
aiming at radically advancing telecommunication industries by embracing cloud computing
technologies and software models in network services. The main pillars behind this revolution are
Software Defined Networking (SDN) and Network Function Virtualizé&ib). On one hand, SDN
introduces a new level of network progranmg by decoupling control and data plane. A logically
centralized controller is in charge of supervising the network state and provides rules to the
network elements for appropriately manang the traffic flows. On the other hand, NFV leverages
virtualization technologies to deploy network elements as software instances, thus allowing an
increased level of flexibility and elasticity in service provisioning. Furthermore, NFV can enable
remarkale reduction in CAPEX/OPEX costs, by replacing dedicated expensive hardware with
commodity servers able to host softwabased network appliances.

The 10T paradigm is drastically enhancing our quality of life and utilization of resources to make
things (ie., home appliances, electronic devices, sensors, etc.) part of the Internet. This paradigm
opens doors tannovationsthat will build novel type of interactions among things and humans
and enables the realization of smanffrastructures smart citiesgetc. AlthoughSDN and NFV are

two separate paradigms, their joint use can further improve the potential security services offered
by the network and meet the broad range of increasing requirements imposed by IoT applications.

In this section, we will presérthe main concepts used by the Security Orchestrator in order to
enforce the relevant security policies in the 10T domain.

3.1 SDNNETWORKING

Software Defined Networking (SDN) is a relatively manadigm, whichaims to decouple the

control plane and the data plane feeducing the management complexity aatlowing external

FLILJXE AOF A2y G2 O2yUNRf GKS ySié2NJ] Qon theStig | OA 2 |
the network flows according to the dynamapplication requests. The three main components of

SDN networks are switches, controllers, and communication interfaces.

Pagel2of 34

v
& stacn

Security
Orchestrator

Northbound API

SDN

Controller

I Southbound API

(- -]

Figure5 SDN Networking Architecture & Management

a) SDN switcheghe forwarding of data traffic is the main responsibility of physical and
virtual SDN switches according to the assigned network configuration. To this aim, appropriate
rules are instructed by the SDN controller in the flow tables to perform packet fdim@rmalong
with a wide range of other operations.

b) SDN controllerithe intelligence of an SDblased network is centralized in its SDN
controller, which maintains the state of the whole system and decides on the traffic routing by
updating relevant flow wles on the switches. Its role allows it to have a global vision over the
network, which makes for the most optimized and dynamic networking decisions.

c) SDN interfacesto facilitate programming and management, the communication
interfaces are fundamentao configure the network behavior. It consists of two main interfaces:
southbound and northbound. While the first one manages the communication between the SDN
controller and the SDN switches, the second one is in charge of the interactions betweesethe u
SDN applications and the SDN controller.

The adoption of SDN in IoT (SBhabled 10T systems) is considered as an essential element in the
success of the Security Orchestrator. Leveragfegcapabilities ofSDN to route, efficiently,the

traffic and optimize the utilization of the network are key enabling functions to manage the
massive amounts of data flow in 10T networks and eliminate bottlenecks. This integration can be
implemented at different levels of the loT network, such as the access (wiheredata is
generated), core and cloud networks (where the data is processed and served), which enables 10T
traffic management from endo-end.

Moreover, SDN can be also leveraged to provide advanced security mechanisms for 0T systems.
For example, trafti isolation between different tenants, centralized security monitoring using the
global vision of the network and traffic dropping at the edge, keeping the malicious traffic from
spreading all over the network.

Pagel3of 34

v
& stacn

3.2 VIRTUAINETWORKEUNCTIONS

Network Function Wtualization (NFV) refers to the adoption of virtualization technologies in
network environments. Unlike traditional network equipment, NFV decouples the software from
the hardware, bringing value added features and notable capital and operating expeasditu
gains. The ETSI (European Telecommunications Standards Institute) has been leading the
standardization of this approach, defining noaethitectures, whictenable the aforementioned
advantages. The ETSI NFV architecture identifies three main buldirig:

a) Virtualization Infrastructure:this layer includes all the hardware and virtualization
technologies necessary to provide the desired resource abstractions for the deployment of
Virtualized Network Functions (VNFs). This includes Storage, Gogaaitl Networkingesources
that are usually managed by a cloud platform.

b) Virtual Network Functions:the core idea of NFV deals with replacing dedicated
hardware equipment with softwardased instances of network functions, i.e., the VNFs. They can
be deployed and managed over multiple environmenfsoviding scalable and casffective
network functions.

c) Management and Orchestrationthe NFV Management and Orchestration (MANO)
module interacts with both the infrastructure and VNF layers in the E'TF3 Architecture. It is
responsible for the management of the global resource allocation which includes: instantiating,
configuring and monitoring VNFs.

Introducing virtualized network resources into the 10T ecosystem brings multiple -adhled
features, @counting for their heterogeneity and rapid growth. When coupled with SDN, NFV
cannot only, provide advanced virtual monitoring tools such as Intrusion Detection Systems (IDSs)
and Deep Packet Inspectors (DPIs), but also provision, and configidentand and scalable
network security appliances, such as firewalls and authentication systems, in order to cope with
the attacks detected by the monitoring agents.

3.3 IOT SECURITY CONTROLS

IoT security controls comprise a set of operations that can be appliedtbgdoT infrastructure
through the 10T controller. The 10T controller is in charge of managing the command and control
over the loT domain, offering higlvel of abstraction operations in order to manage the
infrastructure independently of the underlyirtgchnology. It has been designed aligneith the

SDN controller philosophy.

Pagel4 of 34

v
& stacn

\
Application Security |
Plane Orchestrator
Northbound
API
Control loT
Plane Controller
Southbound
API
loT/CPS loT Devices
Systems i 0 m D
Plane

Figure6 Different planes and APIs contemplated for the IoT controller architecture

Figure 6shows the different planes and APIs contemplated for the 10T controller architecture,
which are introduced below:

1. Application Plane:ln this plane are allocated the applications which requezforming
some kind of control actions over the IoT domaintHis case, theSecurity Orchestrator
could be part of this plane in order to carry out the different 10T operations according to
the security policies. This plane performs the communications with the control plane
through the Northbound API.

2. Northbound AR: This API provides a hidéwvel of abstraction APl which allowsceiving
loT commands and controls independently of the underlying technology, (e.g. HTTP REST
API).

3. Control PlaneThis plane is governed by the I€bntroller, which is in charge teceive
commandand controls from the Application plane and then to perform the specified
operations over the required loT devices using specific 10T communication protocols
through the Southbound API.

4. Southbound APIThis API provides the communicationtween the 0T Controller and the
loT devices using specific 10T communication protocols depending on the IoT device
implementation and requirements.

5. 10T/CPS Systems Planéhe different 0T devices in the architecture, both physical and
virtual, comprise his plane

Pagel5of 34

v
& astacn

3.4 SECURITORCHESTRATGRSTEMM ODEL

The System Model is an internal component of the Security Orchestrator which is in charge of
storing data relevant to the underlying infrastructure and enforced security policies. This data is
made availablé¢o all of the ANASTACIA components in order to further refine the security policies

and improve the detection mechanisms. Depending on the type of the desired security policy, the
System Model stores the relevant VNF details, SDN rules, 10T actionsated malicies.

T e

string: req_id string: ip_addr
string: source[user-system] 1 string: name
string: config[mspl_id] string: ovs_name
string: types[nfv-sdn-iot] string: controller_ip
string: status[pending-active] string: status[on-off-authenticated]
date: timestamp 1 1
1

* string: vnf_id
string: ovs_name
string: ovs_port

string: rule_id string: ip_addr string: action_id
string: ovs_name 1 | string: type[snort-firewall..] string: action
date: timestamp string: status[build-config-active] date: timestamp
string: req_id* date: timestamp string: req_id*
string: req_id* string: ip_addr*

string: rule_id*

Figure7 System Model Data Structure

As the Security Orchestrator expects to receive an MSPL file, each request with its unique ID is
mapped to a class depending on the required security capabiltiedISPLcould require actions

on multiple controllers(e.g., Cooja needs a VM in the OSM and filters in the ONUre are

three capability classes: sdn_orch, nfv_orch and iot_orch. Moreover, the System Module keeps
track of the existing 0T devices on the l@hdhin along with their status.

U requests (Security Orchestrator requests clas3his class stores the different requests
received by the Security Orchestrator. Each request has:

reqg_id:isa unique ID to each request generated by the Security Orchestrator.
source[usersystem]:isii KS &2 dzZNOS 2F GKS NBdzSaded L
YSIya GKFEG GKS NBljdzSad OFYS FTNRBRY (KS w
which means that it came from the Policy Editor Tool as-dssigned policy.

config:is the unque 1D of the MSPL file which relates to the request.

type:Ol'y 06S SAGKSNI aadRy£€3X ayF@¢eé 2N aaz2iéx
This attribute is used to map the requests to the correct capability class.

Pagel6 of 34

v
& stacn

status: reports the status of thesecurity policy enforcement status. The default

G tdzS Aa AGLISYRAYy3IéE KAOK Aa asSid NRIAKD
Gr OGAGSe Fa az2z2y Fa (GKS LRfAoOe KIFLa 0SSy
timestamp:isthe time and date of the received request.

U sdn_orch (SDN orclstration class):This class contains all the details related to the SDN
configuration, whichis requiredeither through a direct SDN policy enforcement, or through
part of a VNF configuration:

rule_id: a unique ID of the injected SDN flow rule.

ovs_name:the name of the Open Virtual Switch on which the rule has been
enforced.

req_idNBf SOl yi NBljdzSad L5 FNRBY GKS aNBI dzS:

U nfv_orch (NFV orchestration classk theclass that stores all the informatiaconcerning the
security VNFs created througlpén Source Mano.

vnf_id: unique ID of the relevant security enabler.

ovs_namename of the OVS on which the VNF is attached.

ovs_port:the port ID of the OVS on which the VNF is attached

ip_addr:management IP address of the VNF.

type:G @ LIS 2F GKS +bC O0{y2NI3X CANBglffX0dD
status [build-config-active].current status of the VNF (instantiating, configuring,
active).

req_id:NBt SO yid NBljdzSad L5 FTNRY (GKS GaNBI dzS:
rule_id:NBf S@FydG {5b NMHzS L5 FNRY GKS GaRyy

U iot_orch (bT orchestration class)this class keeps track of all the lattions, whichwere
taken as mitigation actions due to a certain security policy.

action_id: ID of the action to take on an loT device.

action: action to take (turn on/off).

req_id:NBt SPFyid NBljdzSad L5 FTNRY (GKS GaNBI dzS:

ip_ addr:NBf S@Iyd Lt IRRNBaa 2F GKS L2¢ RSOA

U iot_devices (IoT devices classgontains all the information regarding the loT devices,
including IP address mapping and status.

ip_addr:IPv6 address of the IoT node.

name:name of the IoT node (as provided by the user)
ovs_namethe open virtualswitch thatis managing the IoT network.
controller_ip: IP address of the 10T controller of this node.

status [onoff-authenticated]:current status of the node.

Pagel7of 34

v
& stacn

3.5 ORCHESTRATIGRATEGIES

3.5.10rchestration Tools

In order to implement the intelligent orchestration, the Security Orchestrator interacts with three
key components:

1 The loT controllerUsed to enforce lo8pecific mitigation acties, such as loT devices
access control, authentication and power on/off.€Bl interactions aredone through
RestAPI to send queries to the 10T controller depending on the security policy provided
by the MSPL file.

1 The NFV MANOANn ETSdlefined frameworkdesigned for managing and orchestrating
resources in the cloudt is used by the security orchestrator to create and configure a
wide range of security enablers. It has three main functioning blocks:

o NFV Orchestrator: Manages the registratiorNgftwork Services (NS) and Virtual
Network Function (VNF) packages, lifecycle of different network services and
the resources allocation requests.

o VNF Manager: Configures and monitors each VNF after its instantiation.

o Virtualized InfrastructureManager (VIM): Interacts with the compute, network
and storage resources (clouds) in order to provision relevant VNFs.

1 The SDN controlleris accountable for managing network resources and enabling the
programming of the underlying network. The SDN orchresion is done through the
ONOS driver. This driver has been developed in order to automate the SDN
management using one or multiple ONOS SDN controllers. It controls multiple Open
Virtual Switches (OVS) in order to enable the following functionalities:

o Traffic forwarding (steering) to VNFs.
o Traffic mirroring to different VNFs.

o Traffic dropping.

o Bandwidth limitation.

The combined usage of these components enables the security orchestrator to enforce the
relevant security policies either thugh direct actions such as: traffic dropping and IoT devices
power on/off, or more complex actions when it comes to VNFs:

1 Provisioning:Creating the appropriate VNF on a chosen VIM (According to the VNF
application graph) such as: Intrusion Detection Sy§td o0 L5{ 0 YR CANBgI

1 VNF ConfigurationUsing the MSPL to low level translation, the security orchestrator
pushes the specific configuration of each VNF (IDS rules, Firewall configuration...)

1 Networking Setup:Injecting the relevant SDN flow rules toamage the traffic to be
analyzed for example: mirroring the traffic to a monitoring agent or steering the traffic
through a firewall.

9 1oT Security Control€Enforce 10T securityperationsthrough the 10T Controller.

Pagel8of 34

v
& stacn

Figure 8shows the general architecture of the Secur@ychestrator, whichenables its security

capabilities.
Security Orchestrator
J Open Source
onos MANO
lIoT Controller SDN Controller NFV MANO

loT Devices

“OpenFlo

v ¢~ 'Openstack cloud T

p & : Enabled| OpenStack
: Switch Controller

.

- . UNF | ComputeNode

.. o

Figure8 Security Orchestrator architecture

3.5.2Sample Orchestration Scenario

Figure 9showsa sequencediagram thatdescribes the overall process of security orchestration
from the processing to the enforcement.

Pagel9of 34

v
&9 NASTACIA

1oT infrastructure I Reaction module Orchestration Plane Control Domain

SDN switch I loT Decision Support Mitigation Action System Security Policy Security Enablers NFV SDN
Attacker I ovs loT Device I CuntherI System | Service | Model | Provider I Orchestratnrl Cnntm\lerl
! H . i h i h I I i i i
Device Actuation (Attack) | h i i
! 1 genAttack()! ! I h | |
— ' 1 1
| 2 generate MSPL file | ; ;
) '
| 3 send MSPL file
‘ i 4 getEnablerList(< Capability>)
3 5 <SecurityEnablersList=
6 listlaTDevices()
7 DevicesList(<devices>) i
| 8 listRunningvFs() |
| 9 VNFList{<VNFs>) !
H 1 10 translate(MSPL, <SecurityEnabler=>) |
| 11 getEnablerPlugin(<SecurityEnablers) _ |
3 12 plugin{<SecurityEnabler>)
|_ 13 send <SecurityEnabler> Configuration]
! ‘ ‘ i
Enforcemeni t 1
| | 14 deploy the <SecurityEnabler> VNF
i 15 configure the <SecurityEnabler>
i 16 enforce SDN Forwarding rules
|17 enforce rfes
‘ i 18 enfnrce(lnTAqltmn)
; 19 action() ; I
Figure9 Sequence diagram for Security orchestration (processing and enforcement)
1. Attack generation from the Attacker to tharget node.

2. The Mitigation Action Service generates an MSPL file describing the set of actions in order
to mitigate the attack

3. The Mitigation Action Service sends the MSPL file to the Security Orchestrator through its
Rest API interface.

4. The Security Ordstrator queries the supportedsecurity enablersfrom the Security
Enablers Provider.

5. The Security Enablers Providers sends a list of suppostmlrity enablerswhich
correspond to the desired security policy as instructed by the Mitigation Action Service
6-7-8-9. The Security Orchestrator checks for the status of the underlying infrastructure by
listing the different 10T devices and running VNFs by sending relevant requests to the System

Model.

10. After identifying the suitable enabler fahe desired security policy, the Security
Orchestrator queries thelow-level configuration for the relevant enabler from the Policy
Interpreter.

MM® ¢KS t2fA08 LYGSNIINBGISNI |jdzSNRSE (GKS Syl

12. The Securitfnablers Provider sends thHew-level translator plugin to the Policy
Interpreterin order to generate the specific configuration.

13. The Policy Interpreter sends the relevant configuration to the Security Orchestrator.
If the Security Policy is a VNFippi
14. The Security Orchestrator deploys the relevant VNF.

15. The Security Orchestrator configures the relevant VNF using the configuration received
from the Policy Interpreter.

16. The Security Orchestrator enforces the SDN rules in order to makéNRk operational
(For example: traffic mirroring in case of an IDS, traffic steering in case of a firewall).

Page20 of 34

v
& stacn

If the Security Policy is an SDN policy:

17. The SDN controller enforces the relevant rules into the Open Virtual Switch in the loT
Infrastructure.

If the Security Policy is an loT control policy:
18. The Security Orchestrator forwards the action request to the 10T Controller.

19. The IoT Controller enforces the required action on 10T Devices.

3.6 RES APk ANDBASIAVIECHANISMS

For the differentinteractions, the Security Orchestrator exposes a REST API interface which
enables the following functionalities: MSPL Policy Enforcement and Information about the
underlying infrastructure.

1. MSPL Policy EnforcemenThe Security receives queries in orderenforce security policies
SAGKSNI RANBOGtfe FTNRY (KS t2fA0& LydSNLINBGSNI
I GawSIFOGAGS t2fA0eéd . 20K Oly 0SS SYyF2NOSR dz

URLhttp://<SecurityOrchestratorlP>/enforce

METH®: POST

DATA{

GLRtAOREY faf{t[YCL[9Y/ hbt¢9be¢hHx

ey 60f SNEEYF[AAG 2F {SOdzNRi(Ge& 9yl o6f SNEDH
}

RETURNShHe Security Orchestrator returns a unique request ID that can be used to track
the policy enforcement process.

Optionally, a lisbf security enabler candidates lisin be added as an argumeiithe IP addresses
if needed would go inside the MSPL.

2. Information about the requestsThe Security Orchestrator can provide information regarding
the requests and their current statussing the following Rest API interface:

URLhttp://<SecurityOrchestratorlP>/info/requests/<req_id>
METHODGET

RETURNShe Security Orchestrator returns the VNF/SDN/IoT details relevant to the
request with id: <req_id>. If no request ID was suppliedreturns the details concerning
all the enforced security policies.

Page21 of 34

v
& stacn

Sample response:

{8
"requests":[&
{8
"status":"pending",
"type":"NFV",
"source":"user",
"req_id":"45",
"time":"2018-4-9, 18:2:30",
"config":"MSPL"
}
]
}
3. Information about the loT devicesThe Security Orchestrator can provide information

regarding the 10T devices present in the network and their current status tisenfpllowing Rest
APl interface:

URLttp://<SecurityOrchestratorlP>/info/devices/<device_ip>
METHODGET

RETURNShe Security Orchestrator returns the details relevant to the 10T device with IP:
<device_ip>. If no IP address was supplied, it returhe tist of all current loT devices.

Sample response:

{B
"devices":[O

=
"status":"ON",
"{p":"172.16.1.100",
"pame": "cameral",
"ovs_name":"br-edge",
"controller_ip":"172.16.1.10"

1,

{8
"status":"OFF",
"ip":"172.16.1.101",
"name": "camera2",
"ovs_name":"br-edge",
"controller_ip":"172.16.1.10"

Page22 of 34

v
&9 NASTACIA

4 USE CASES DESCRIPFIORI THEECURITORCHESTRATOR

In this section we will present the different initial use cases which aim to show the different
capabilities of the ANASTACIA framework. We lwikfly explain the aim of each use case,
followed by the relevant sequence of events in order to mitigate different types of attefksed

in the document D6.23]

4.1 BMS.2INSIDER ATTACK ON RHEE SUPPRESSIOSTEW

The main objective of this usmseis the evaluation of ANASTACIA framework to protect the
system against an insider attack and avoid any damage to the building assets. In {téseisthe
attacker exploits the building operations workstation to request the activation of fire alert syste
managed by an IoT device.

The following figure shows the main interactions of the Security Orchestrator for a security policy
deployment in a reactive approach. The figure shows the messages exchanged by the ANASTACIA
components in the Orchestration Pla and the Enforcement Plane. The Reaction module is
showed just in order to provide the starting point of the workflow. In this case, the process is
compounded by the following steps:

1. The reaction module sends an MSPL policy as a reaction measure.

2. The Searity Orchestrator obtains the list of candidate security enablers in an interaction
with the Security Enabler Provider.

3. The Security Orchestrator obtains the list of deployeddevices in an interaction with the
System Model.

4. The Security Orchestratobtains the list of running VNFs in an interaction with the System
Model.

5. The Security Orchestrator makes the decision regarding which Security Enabler must be
used in order to enforce the security MSPL policy.

6. The Security Orchestrator requests a poti@nslation to the Policy Interpreter in order to
get the configuration for the selected security enabler which is Cooja Honeynet for the use
case of BMS.2.

7. The Policy Interpreter performs the translation, using a plugin received in another
interaction with the Security Enabler Provider (not shown in the figure for simplicity).

8. The Policy Interpreter sends the Coéjaneynet configuration to the Security
Orchestrator.

9. The Security Orchestrator requests to VNF Controller for the deployment of a Honeynet
with virtual 10T devices using Cooja emulator.

10.The Security Orchestrator requests to SDN Controller for the traffic forwarding from the
real 10T network towards the virtual Honeynet in VNF deployment.

Page23 of 34

v
& stacn

Reaction module || Orchestration Plane ” Control Domain

Mitigation Action Security Security Enablers Policy WVNF SDN
Service Orchestrator System Mode\ Provider Interpreter Controller Controller

Orchestratlon Management

! 1 send MSPL file
l—).
I

12 getEnab\erLlst(Capab”lt)‘}

_ 3send (SecuntyEnabllerLlst)

I

4 gestListloTDevice !
!

5 send <Devicelist> |
‘1

6 gestListVNFs
———>
7

|
1
. I
send <ListVNFs>

8 translate (MSPL, Cooja-Enabler)
T
9 send Cooja Configuration
T

-

10 deploy VNF with Codja
[

A

11 enforce Honeynet in| Cooja
! !
12 enforce IPv6 Forwarding towards Cooja hoheynet

N I A I

>

Figure10 Sequence diagram forae case BMS.2

4.2 MEC.3: DOS/DD0S ATTACKS USING SMARRMERAS ANOOT
DEVICES

The MEC.3 use case aims to show how ANASTACIA can cope with one of tvelkkostwn loT
attacks. Indeed, DoS (Denial of Service) attacks are hindering, until this day, the opdemdf

IoT. The disruption of services induced by this type or security flaws can be catastrophic, especially
in industrial and health care environments.

Reaction Module Orchestration Plane Control Domain

Mitigation Action Security Policy Security Enablers
Service Orchestrator Interpreter Provider I SDN Controller I | NFV MANO '

| I
I 1 generate MSPL file !

I
I
| 2 send M§PL file !

>
Orchestration Processing /

| 3 getEnablerList(Filtering)
I
! 4 <SDN(ONOS), OVS-Firewall>

[
o

L

|
I
I
I
I
|
I
|
T
I
|
]
[]
I
1
|
' 5 select{0WS-Firewall) X
] I
I

|

!

|

I

L

|

I

<

|

I

|

]

]

I

I

1

|

I

6 translate(MSPL, OVS-Firewall)

7 getEnablerPlugin{ows- Flrewa”}

8 plugin(ovs-Firewall)

9 send OWS-Firewall Configuration

-

]
Enforcement /
! 10 create(0OVS-Firewall)
|

11 configure(OvS-Firewall)

Y. ¥

12 enforce traffic steering through the OWS-Firewall

Mitigation Action Security Paolicy Security Enablers | SDM Control\er ll MNFY MAND l
Service Orchestrator Interpreter Provider

Figurell Sequence diagram for MEC.3 use case interactions with SecQrichestrator

Page24 of 34

v
& astacn

In this scenario,the attacker targets an IoT device by flooding the network with ICMP packets,
disrupting its functionalities. After the detection of the attack, the framework goes through the
following sequence of events:

1. The Reaction module generates the MSPL file describing the set of mitigation actions to
be taken in order to patch the security flaw.

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security
Orchestrator.

3. After receiving the desed policy, the Security Orchestrator queries the list of the
filtering security enablerérom the Security Enablers Provider.

4. The Security Enablers Provider returns a list containing all the suppceedrity
enablerswhich can enable traffic filtering.

5. The Security Orchestrator picks the most appropriate enabler depending on the cost and
status of the underlying infrastructure.

6. The Security Orchestrator chooses the e8wall as a filteringecurity enablerthen

it queries thelow-level configurationwhich corresponds to the MSPL file. It sends the

relevant request to the Policy Interpreter

The Policy Interpreter requests the QWFigewall translation plugin.

8. The Security Enablers Provider returns the &w&wallplugin thatwill be then usd by
the Pdicy interpreter toperform the lowlevel translation

9. The Policy Interpreter sends the relevaliw-level configuration to the Security
Orchestrator.

10. After gathering all the required inputs for the Enforcement of the security policy, the
SecurityOrchestrator creates the OMSrewall VNF using the NFV Orchestrator.

11.As soon as the VNF is accessible, the Security Orchestrator refines the default
configuration of the VNF to adapt it to the current security threat.

12.As a final step, using SDN networkititge Orchestrator enforces the necessary rules in
the Open VirtualSwitches thatwill alter the default routing mechanisms and make all
the packets go through the newly deployed firewall. This way, only the malicious traffic
is stopped, and all the seres provided but the 10T devices are kept.

~

4.3 BMS.3:REMOTE ATTACK ON TB{HLDING ENERGY MITIRID

This use case will show how ANASTACIA can cope with a remote attack on the building energy
microgrid. The attack is a SQbjection that targets the backend database server. The MMT
monitoring tool is capable of detecting such threatsorder toenabk the ANASTACIAitigation

of such attacks.

Page25 of 34

v
& stacn

Reaction Module Orchestration Plane Control Domain

Mitigation Action Security Policy Security Enablers
Service Orchestrator Interpreter Provider SDM Caontroller

i
i 1 generatie MSPL file

! 2 send MEPL file

.
’l

Orchestration Processing
| 3 getEnablerListiFiltering)

Y

4 <SDN(ONDS), OVS-Firewg]l>

i
select(SDN{ONDS)) !

6 translate(MSPL, ONOS)

I
I
I
I
|
Et]

7 getEnablerPlugin{onos)

L
-

_ 8 plugin{oMOS)

9 send ONOS Configuration

|
Enforcement /
' 10 enforce IPv6 traffic isolatioh

| | |
Mitigation Action Security Policy Security Enablers
Service Orchestrator Interpreter Provider

Figurel2 Sequence diagram for the BMS.3 use case

After the detectian of the attack, theANASTACI#amework goes through the following sequence
of events:

1. The Reaction module generates the MSPL file describing the set of mitigation actions to
be taken in order to patch the security flaw.

2. The Mitigation Action Service s#s the MSPL Filtering policy file to the Security
Orchestrator.

3. After receiving the desired policy, the Security Orchestrator queries the list of the
filtering security enablerérom the Security Enablers Provider.

4. The Security Enablers Provider returns a list containing all the suppceedrity
enablersthat can enable traffic filtering.

5. The Security Orchestrator picks the most appropriate enabler depending on the cost and
status of the underlying infrastructure.

6. The Security Orchestrator chooses ONOS as a filtedogrity enablerthen it queries

the low-level configuration which corresponds to the MSPL file. It sends the relevant

request to the Policy Interpreter

The Policy Interpreter requests the ONOS pdiitianslation plugin.

8. The Security Enablers Provider returns the GlDgin, whichwill be then usedy the
Policy interpreter tgperform the lowlevel translation

9. The Policy Interpreter sends theelevant low-level configuration to the Security
Orchestator.

10. After gathering all the required inputs for the Enforcement of the security policy, the
Security Orchestrator, using the SDN driver, instructs the SDN controller to isolate the
malicious traffic on the edge OVS.

N

Page26 of 34

v
& stacn

4.4 BMS.4:.CASCADE ATTACK ON BEGATALBUILDING

BMS.4 use case demonstratANASTACIA capability of detecting attack on sensor network by
changing temperature of given set of them and then triggering fake fire and evacuation alarms
causing harm in a tall building infrastructure, panic amongspenel and wasted productivity
time. Figure 13 illustrates interactions between Security Orchestrator and other ANASTACIA
components in use case BMS.4. Internal SO interactions have been depicted in 4dction

Reaction Module Orchestration Plane Control Domain

Mitigation Action Security Palicy Security Enablers
Sernvice Orchestrator Interpreter Provider IoT Controller
I 1 I 1

| 1
i 1 generatie MSPL file 1
i

2 send MEPL file

i
i
1
Sl

¥
|

Orchestration Processing /
| 3 getEnablerList(laT)

4 <|oTControl=>

select({loTControl)

6 translate(MSPL, loTControl)

.
>

7 getEnablerPluginlloTControl)

plugin{loTControl)

i
-

9 send loTControl Configuration

|
|
I
I
I
|
|
|
!
|
|
!
Eat}
I
|
|
|
|
|
|
|
I
I
I
!
-
|
|
|
|
|
I
I
|
|
|

! 10 enforce loTControl actions
] |

Mitigation Action Security Policy Security Enablers IoT Controller
Service Orchestrator Interpreter Provider

Figure13 Sequence diagram for the BMSuée case

i
i
i
i
i
|
|
|
T
i
i
i
i
i
i
|
i
i
i
i
i
i
i
i
L
|
i
!
i
i
]
i
i
|
i
1 -
| -

~ A s oA = oz

ANASTACIA igble o RSGSOG Foy2NXIFf L2¢ RSOAOS 0SKI DAz
component within the Monitoring Module. From the Security Orchestrator point of view, the
defined mitigation action is to turn off the infected temperature sensor. The security enforcement
process is as follows:

1. The Reaction module generates the MSPL file describing the set of mitigation actions to
be taken in order to patch the security flaw.

2. The Mitigation Action Service sends the MSPL Filtering policy file to the Security
Orchestrator.

3. After receiving the desired policy, the Security Orchestrator queries the list of the
security enablers, whichcan enforce loT specific mitigation actiofts the capability
GL2¢PQ2y INRT €

4. The Security Enablers Provider returns the suppodedurity enables accordingly. In
GKA& OFasSz AlGlerli®GdzNya aL2¢ [/ 2y GNRT

5. Since the Security Orchestrator received only @eeurity enableiin this use case, it
selects thisecurity enabler

6. The Security Orchestrator then queries tlosv-level configuration thatcorregponds to
the MSPL file. It sends the relevant request to the Policy Interpreter.

Page27 of 34

v
& stacn

7. The Policy Interpreter requests the loTConppolicy translation plugin.

8. The Security Enablers Provider returns the loTCdetrplugin, whichwill be then used
by the Pdicy interpreter toperform the lowlevel translation

9. The Policy Interpreter sends the relevaliw-level configuration to the Security
Orchestrator.

10. After gathering all the required inputs for the Enforcement of the security policy, the
SecurityOrchestrator enforce the mitigation action through the Rest API interface of
the 10T controller.

5 IMPLEMENTATION OF THECURITORCHESTRATOR

This gctionpresents the details regarding the implementation of the Security Orchestrator.

5.1 SECURITORCHESTRATQRDEBASE

The Security Orchestrator is divided into 4 main -putyects: IoT Orchestration Network
Orchestration NFV Orchestrationand System Model Eachquery received via the Rest API
interface is forwarded to th&ecurityManagerthat will be responsible for the orchestration part.

Figure 14depicts the structure of the project.

Figurel4 Structure of the Security Orchestrator Code Base

1 loT Orchestration Contains thdibraries thatenable the Security Orchestrator xecute
NBY2GSte FOlAz2ya 2y GKS L2¢ RSOAOSA (KNERdJA

1 Network Orchestration This subproject is comprised of lirary, whichadds an extra
abstraction layer on top of the SDN Nabobund API, in order to enable SDN management
functionalities thatare relevant to policy enforcement, suds traffic isolation, traffic
mirroring, andtraffic steering and path creation.

1 NFV OrchestrationThis part of the project takes care of instamiig and configuring
security VNFasing the NFV orchestrator Open Source Mano.

Page28 of 34

v
& astacn

