

ANASTACIA has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement N° 731558

and from the Swiss State Secretariat for Education, Research and Innovation.
This document only reflects the ANASTACIA Consortium’s view.

The European Commission is not responsible for any use that may be made of the information it contains.

D2.5
Policy-based Definition and
Policy for Orchestration Final
Report
This deliverable presents the results of ANASTACIA Task 2.1, which aims
to analyse and define the security policy models for the ANASTACIA
framework. The document includes the policy models to deal with the
main security requirements of the identified use cases

Distribution level PU

Contractual date 31.12.2018 [M24]

Delivery date 27.12.2018 [M24]

WP / Task WP2 / T2.5

WP Leader UMU

Authors Alejandro Molina Zarca, Jorge Bernal Bernabé,
Jordi Ortíz, Antonio Skarmeta (UMU).

EC Project Officer Carmen Ifrim
carmen.ifrim@ec.europa.eu

Project Coordinator Softeco Sismat SpA
Stefano Bianchi
Via De Marini 1, 16149 Genova – Italy
+39 0106026368
stefano.bianchi@softeco.it

Project website www.anastacia-h2020.eu

mailto:carmen.ifrim@ec.europa.eu
mailto:stefano.bianchi@softeco.it
http://www.anastacia-h2020.eu/

Page 1 of 63

Table of contents

PUBLIC SUMMARY ... 5

1 Introduction ... 6

1.1 Aims of the document ... 6

1.2 Applicable and reference documents ... 6

1.3 Revision History ... 7

1.4 Acronyms and Definitions ... 8

2 State Of the Art .. 9

3 Discussion on Progress Beyond the State of the Art ... 11

4 ANASTACIA Architecture Overview ... 14

5 ANASTACIA Security Policy Models ... 16

5.1 High-level Security Policy Language (HSPL) ... 16

5.1.1 Subject ... 16

5.1.2 Action ... 17

5.1.3 Object .. 17

5.1.4 Field condition ... 17

5.1.5 Dependence, priority and Enabler candidates .. 17

5.1.6 Combining HSPL components .. 18

5.1.7 HSPL example .. 19

5.2 Medium-level Security Policy Language (MSPL) .. 19

5.2.1 IT Resource .. 19

5.2.1.1 Configuration ... 20

5.2.1.2 Dependences, priority and Enabler candidates... 22

5.2.2 MSPL Components relationship .. 22

5.2.3 MSPL Example ... 23

5.3 Security Policy Models Definition .. 24

5.3.1 HSPL ... 24

5.3.2 MSPL .. 27

5.3.2.1 Filtering Policy ... 29

5.3.2.2 Traffic Divert .. 30

5.3.2.3 Access control Policy ... 31

5.3.2.4 Channel Protection Policy .. 33

5.3.2.5 Privacy Policy ... 34

5.3.2.6 Monitoring Policy .. 35

5.3.2.7 Network Anonymity... 36

Page 2 of 63

5.3.2.8 QoS .. 38

5.3.2.9 Data Aggregation ... 38

5.3.2.10 Operational policies ... 39

5.3.2.11 Policy for Orchestration ... 42

5.4 Policy editor tool ... 43

5.5 Policy conflicts detection ... 44

5.5.1 Redundancy conflict .. 45

5.5.2 Conflict of priorities ... 46

5.5.3 Conflict of duties .. 46

5.5.4 Conflict of dependence ... 46

5.5.5 Conflict of managers .. 47

6 Use Case: Security Policy Enforcement in IoT building scenarios ... 48

6.1 Authentication ... 48

6.2 Authorization ... 49

7 Conclusions .. 51

8 Annex ... 52

9 References ... 62

Page 3 of 63

Index of figures

Figure 1: Policy Models Relationship ... 12

Figure 2: User/Orchestration Planes ... 14

Figure 3: HSPL example ... 19

Figure 4: ANASTACIA-MSPL Scheme ... 23

Figure 5: MSPL Example .. 24

Figure 6: HSPL Complex Type .. 25

Figure 7: Action Simple Type ... 25

Figure 8: Object Simple Type ... 25

Figure 9: Fields Complex Type ... 26

Figure 10: Policy Dependence ... 26

Figure 11: Event Dependence.. 27

Figure 12: Enabler Candidates ... 27

Figure 13: ITResource type .. 27

Figure 14: ITResource configuration ... 28

Figure 15: Capability Complex Type .. 28

Figure 16: RuleSetConfiguration.. 28

Figure 17: ConfigurationRule ... 29

Figure 18: FilteringConfigurationCondition ... 29

Figure 19: PacketFilterCondition ... 30

Figure 20: Application Layer Condition ... 30

Figure 21: FilteringAction .. 30

Figure 22: TrafficDivertConfigurationCondition .. 30

Figure 23: TrafficDivertAction ... 31

Figure 24: Authentication Condition ... 31

Figure 25: Authentication Action .. 32

Figure 26: AuthorizationCondition .. 32

Figure 27: Authorization Action... 33

Figure 28: DataProtectionCondition .. 33

Figure 29: Data Protection Action ... 33

Figure 30: Action Parameters .. 34

Figure 31: PrivacyConfigurationCondition... 34

Figure 32: Privacy Action ... 34

Figure 33: Privacy methods ... 35

Figure 34: MonitoringCondition .. 36

Page 4 of 63

Figure 35: MonitoringAction ... 36

Figure 36: AnonymityConfigurationCondition .. 36

Figure 37: AnonymityAction .. 37

Figure 38: OnionRoutingTechnologyParameter .. 37

Figure 39: QoSCondition .. 38

Figure 40: QoSAction ... 38

Figure 41: DataAggregationConfigurationCondition ... 39

Figure 42: DataAggregationAction .. 39

Figure 43: Operational Policy .. 39

Figure 44: IoT control capability .. 40

Figure 45: VIoT Honey Net... 40

Figure 46: IoTHoneyNet Type .. 41

Figure 47: ioT HoneyNet Type elements ... 42

Figure 48: HoneyPot type .. 42

Figure 49: ITResourcesType ... 43

Figure 50: Policy Editor Tool – Refinement ... 43

Figure 51: Policy Editor Tool - Enforce request ... 44

Figure 52: Rule Engine ... 45

Figure 53: Rule syntax example ... 45

Figure 54: Redundancy conflict rule example ... 45

Figure 55: Priority conflict rule example ... 46

Figure 56: Duties conflict rule example ... 46

Figure 57: Dependence conflict rule example ... 47

Figure 58: Managers conflict rule example ... 47

Figure 59: HSPL to MSPL orchestration example .. 48

Figure 60: AuthN Orchestration graph .. 48

Figure 61: AuthZ HSPL to MSPL Orchestration example ... 49

Figure 62: AuthZ Orchestration graph ... 49

Index of tables

Table 1: Main identified policy solutions .. 11

Table 2: HSPL Action - Object combination ... 18

Table 3: HSPL Field - Object combination.. 19

Page 5 of 63

PUBLIC SUMMARY
This deliverable describes the design and definitions of the security policies for the ANASTACIA framework.
The design and modelling start from a study of the state of art about current techniques, technologies and
policy languages as well as the relationship between them. That study serves as baseline to gather a set of
base policy models and feasible ideas applicable over the framework. This study can be consulted at D2.1.
After that, the document exposes a short overview of the ANASTACIA architecture in order to provide the
reader a global vision of the policy-based framework, facilitating the comprehension of the following
sections, which are focused on the definition of the security policy models.

Regarding the policy model’s definition, this document exposes how ANASTACIA will adopt the two-level
policy definition approach; the first high-level policy language aims to simplify the task of non-technical users,
whereas the second one is a richer and more powerful policy language, but still independent of the subjacent
layers. For each level, it has been exposed the main components of the design and how it is possible to use
the models to specify the security policies. The main security policies applicable over the main identified IoT
and MEC scenarios have been identified too. In this regard, the document provides the most relevant policy
models, including access control (authentication and authorization), channel protection, filtering, traffic
diverts, network anonymity, Quality of Service, privacy, data aggregation, operational security policies as well
as policies for orchestration.

Finally, the document provides, as examples, two different instantiations of the security policies by applying
the previous defined policy models. The instantiations are scoped in IoT building scenario, corresponding to
the orchestration of security policies for authentication and authorization.

Page 6 of 63

1 INTRODUCTION

1.1 AIMS OF THE DOCUMENT

This document is part of ANASTACIA WP2 “Security and Trust by Design Enablers” which aims to analyse and
provide formal definition of interoperable security policies for SDNs, NFV and IoT. WP2 also aims to: provide
an analysis of attack threats and mitigation measures for SDNs, NFV and IoT-enabled scenarios; perform an
analysis and formal definition of privacy risk models; provide a set of secure software development guidelines
and procedures.

Concretely, this deliverable is scoped in Task 2.1 of WP2, which aims to analyse and describe the existing
proposals for policy modelling and policy orchestration in order to devise innovative declarative
interoperable policy models that can be afterwards evaluated and enforced in NFV, IoT and SDN
architectures. Policy models defined herein will serve as input for the Policy Interpreter (Security
Enforcement Manager) defined in the scope of WP3 for policy analysis and enforcement. Existing models and
languages will be adapted and extended to consider context and changes in the environment during
interoperation. ANASTACIA will consider and model diverse types of security policies, such as authentication,
authorization, filtering, channel protection and forwarding.

Task 2.1 is also providing an authorization model based on capabilities tokens and the policies to manage the
access control to device’s features and services, including the definition of contextual rights delegation, fine-
grained access control rights, and mechanisms to preserve privacy and personal information.

The main goal of this particular deliverable is to provide the security policy models required to deal with the
security aspects demanded in the scope of ANASTACIA project.

This document is structured as follows: Section 2 provides the state of the art of related policy models,
techniques and technologies. Section 3 highlights the most relevant innovations of ANASTACIA in this subject.
Section 4 gives an overview of the ANASTACIA architecture, contextualizing the policy models in the
ANASTACIA framework. Section 5 is the core of the deliverable, since it defines the security policy models at
both high-level and medium-level of abstractions. Section 6 provides two different instantiations of the
security policies by applying the previous defined policy models.

1.2 APPLICABLE AND REFERENCE DOCUMENTS

This document refers to the following documents:

• ANASTACIA Grant Agreement N°731558 – Annex I (Part A) – Description of Action.

• ANASTACIA Consortium Agreement v1.0 – December 6th 2016.

• ANASTACIA deliverable D1.1 – Holistic Security Context Analysis.

• ANASTACIA deliverable D1.2 – User-centred Requirement Initial Analysis.

• ANASTACIA deliverable D1.3 – Initial Architecture Design.

• ANASTACIA deliverable D2.1 – Policy based definition and policy for orchestration first report.

Page 7 of 63

1.3 REVISION HISTORY

Version Date Author Description

0.1 05.11.2018 Alejandro Molina
Zarca and Jorge
Bernal Bernabé,
Antonio
Skarmeta (UMU)

Skeleton of expected contents

0.2 19.11.2018 Jorge Bernal
Bernabé (UMU)

Section 1 inputs.

0.3 20.11.2018 Alejandro Molina
Zarca (UMU)

Section 2 and 3 inputs.

0.4 21.11.2018 Jorge Bernal
Bernabé (UMU)

Section 4 inputs.

0.5 26.11.2018 Alejandro Molina
Zarca and Jorge
Bernal Bernabé
(UMU)

Section 5 inputs.

0.6 27.11.2018 Alejandro Molina
Zarca (UMU)

Section 5 inputs.

0.7 28.11.2018 Alejandro Molina
Zarca (UMU)

Section 5 inputs.

0.8 03.12.2018 Alejandro Molina
Zarca (UMU)

Section 6 inputs.

0.9 10.12.2018 Alejandro Molina
Zarca, Jorge
Bernal Bernabé
and Jordi Ortiz
Murillo, Antonio
Skarmeta (UMU)

Internal review

1.0 18.12.2018 Rubén Trapero
Burgos (ATOS)
and Alejandro
Molina Zarca
(UMU)

Final review

Page 8 of 63

1.4 ACRONYMS AND DEFINITIONS

Acronym Meaning

BMS Building Management Systems

CIM Common Information Model

CPS Cyber Physical System

CRUD Create, Read, Update, and Delete

DSPS Dynamic Security and Privacy Seal

HSPL High-level Security Policy Language

IoT Internet of Things

MANO Management and Orchestration

MEC Mobile (Multi-access) Edge Computing

NFV Network Function Virtualization

NSF Network Security Functions

PDP Policy Decision Point

PEP Policy Enforcement Point

PSA Personal Security Application

SDL System Description Language

SDN Software Defined Networking

SEC Security Enforcement Manager

SPL Security Policy Language (SPL)

Page 9 of 63

2 STATE OF THE ART
This section presents a state of the art for security policy models, the main related technologies as well as
the possible relationship among them. Regarding the policy models, Common Information Model (CIM) [1]
is the main DMTF standard that provides a common definition of management-related information
independent of any specification. The model defines concepts for authorization, authentication, delegation,
filtering, and obligation policies. However, for an information model to be useful, it must be mapped into
some specification. And for this purpose, CIM models are not suitable by themselves, due to the huge number
of classes which is compound. xCIM High-level Security Policy Language (SPL) defined in [2] allows to the
administrator the definition of security policies using a friendly language, near to the spoken English. It also
has an internal format which is a language for formal modelling and low-level abstraction that is oriented to
developers. xCIM System Description Language (SDL) is a sub-model that represents the medium level
abstraction representation for system description. Whereas xCIM Security Policy Language (SPL) is a sub-
model of CIM that represents the medium/low level abstraction representation for security policies. In the
proposed approach there is a translation from the high-level specification to low-level rules specified by a
language based CIM-Policy Information Model (i.e. xCIM-SPL or internal format). These policy models have
been used in the scope of POSITIF [3] and DESEREC [4] European projects.

Following the previous approach, [5] presents High-level Security Policy Language (HSPL) and the Medium-
level Security Policy Language (MSPL). They are two abstractions defined within the European project
SECURED [7] to specify the security policy. High-level Security Policy (HSPL) is a policy language suitable for
expressing the general protection requirements of typical non-technical end-users, such as “do not permit
access to illegal content” or “block access to peer-to-peer networks”. The Medium-level Security Policy
Language (MSPL) is the policy abstraction used for expressing specific configurations in a device-independent
format. That is, an abstract language with statements related to the typical actions performed by various
security controls (e.g. matching patterns against packet headers, keeping track of connection status,
identifying the MIME type of a payload), but expressed in a generic syntax. HSPL is refined in MSPL, and the
latter in final configurations for PSAs. PSA (Personal Security Application) is the component within the
SECURED project architecture which enforces de configuration. It is responsible to enforce a security policy
as specified by the user.

In more general terms, The Web Services Policy Framework [8] provides a general-purpose policy model and
corresponding syntax to describe the policies of entities in a Web services-based system. It defines a base set
of constructs that can be used and extended by other Web services specifications to describe a broad range
of service requirements and capabilities. Policy expressions are represented in XML.

Focused on objects, Ponder2 [9] is a policy system suitable for a wide range of environments and applications.
Everything in Ponder2 is a Managed Object. Managed Objects include management policies and adaptors to
real-world objects such as sensors, alarms, switches etc. Making everything a managed object allows Ponder2
to manipulate them all for management purposes in the same way. The basic Ponder2 objects include Events,
Policies and Domains, it is up to the user to create or reuse Managed Objects for other purposes such as
adaptors. There are currently two basic policy types in Ponder2, Obligation Policies (Event Condition Action
policies) and Authorisation Policies.

Beyond general policy models, it is possible find models or concepts specific purposes, applicable to policy
models. E.g. In [10] the requirements of honeynet description are studied and a survey of existing description
languages is presented, concluding that a CIM (Common Information Model) match the basic requirements.
Thus, a CIM like technology independent honeynet description language (TIHDL) is proposed. The language
is defined being independent of the platform where the honeynet will be deployed later, and it can be
translated, either using model-driven techniques or other translation mechanisms, into the description
languages of honeynet deployment platforms and tools.

Focused on Network Security Functions, in [11][12] is being studied an approach based on a model of
capabilities that allows to unambiguously determine what Network Security Functions (NSFs) can do in terms

Page 10 of 63

of security policy enforcement. Furthermore, when an unknown threat (e.g., zero-day exploits, unknown
malware, and APTs) is reported by a network security device, new capabilities may be created, and/or existing
capabilities may be updated. These new capabilities may be sent to and stored in a centralized repository or
stored separately in a local repository. In either case, a standard interface is needed during this automated
update process. In defining the capabilities of an NSF, the “Event-Condition-Action” (ECA) policy rule set
model is used, and it consist of “An Event”, defined as the occurrence of an important change in the system
being managed, and/or in the environment of the system being managed, “A Condition”, which is a set of
attributes, features, and/or values that are to be compared with a set of known attributes, features, and/or
values in order to make a decision NSFs provide security functions by executing various Actions.

Regarding the use of policies for orchestration [13] is focused on combining SDN and NFV principles aiming
to formulate a baseline architecture that will facilitate policy-driven dynamic methods for (i) management of
SDN resources, (ii) lifecycle management of VNFs and the associated data, and (iii) orchestration of multiple
diverse VNFs to deliver Business Applications as NFV Services (i.e. Service Chains). The salient features of the
proposed architecture include: Modular design by enabling hardware elements, VNFs, services and
orchestration decoupling, Information Model describing and abstracting network resources and network
functions, as well as permitting policy-based management of individual VNFs and orchestration of NFV
Service Chains. The instantiation of NFV Services is governed by policy rules and the Policy Service of the
NFVO is based on Ponder2.

In [14] authors present a novel SDN-based NFV orchestration framework, called APPLE, to enforce network
function policies while providing the above properties. APPLE uses the SDN paradigm, running an
Optimization Engine periodically to make adjustment according to the large time-scale network dynamics. It
takes the traffic rate, forwarding path, and policy chain of each flow, together with the available hardware
resources, as input. In this framework, policies are specified by network operators or applications describing
the sequence of NFs that each class of flows need to traverse in order.

[15] introduces a novel model-driven method to orchestrate service policy within system context in design
time. By applying top-down SOA (Service-oriented-Architecture) design methodology, firstly the logical
service policy model based on WS-Policy is created to describe relation among service policy in logical level,
and then it is transformed to physical service policy model with more factors of real system topology
considered. Finally, service policy deployment model is generated to describe the relation among policy
related artefacts and policy repositories, and guide and automate the deployment of policies in runtime
environment as well. This framework is no focused on distributed systems and networks.

Of course, the policy for orchestration approach requires to be conscient of the possible policy conflicts. In
that sense, [16] provides a taxonomy of semantic conflicts, it analyses the main features of each of them and
provides an OWL/SWRL modelling for certain realistic scenarios related with information systems. It also
describes different conflict detection techniques that can be applied to semantic conflicts and their pros and
cons. In [17], as part of the solution, authors shows in which way an ontology is used as input for a Trust and
Security Decision Support System, in order to assist in the Intercloud security decision making process,
quantifying security expectations and trustworthiness about Cloud Service Providers. [18] builds up an
efficient rule engine in a practical smart building system. Moreover, a rule engine adaption scheme is
proposed to minimize the rule matching overhead.

Page 11 of 63

3 DISCUSSION ON PROGRESS BEYOND THE STATE OF THE ART
As it can be inferred from the previous section, from the point of view of the system and security
management it is interesting to provide different levels of security policies in order to provide different levels
of abstraction for different profiles of management. It is also important to highlight the difference between
generic models and specific extensible models, as well as remark the policy orchestration features and policy
conflict detection. Since ANASTACIA seeks to cover as much as possible use cases, we focus in solutions which
provide policy models from the policy languages in order to support the extension and creation of new ones.

Solution Policy models

xCIM
Authentication, Authorization, Filtering, Channel

Protection, Operation

SECURED
Authentication, Authorization, Filtering, Channel
Protection, Operation (there are more concepts

but pending to be extended)

WS-Policy Framework Specific policy models for web services

Ponder2 Obligation (ECA), Authorization

ANASTACIA

Authentication, Authorization, Filtering, Channel
Protection, Operation, Monitoring, Anonymity,
IoT management, Traffic Divert, IoT Honeynet,

Privacy, QoS, Data Aggregation, Policy for
Orchestration

Table 1: Main identified policy solutions

Table 1 shows the available policy models per solution. As it can be seen, xCIM and SECURED are the most
suitable as to security policy models, but it is important to highlight that SECURED defines more security
concepts pending to be extended. With this in mind, ANASTACIA policy model improves the SECURED current
state of the art as well as provide novelty approaches in order to be able increase the security measures and
countermeasures in the whole system at different levels. To this aim, ANASTACIA adopts and extend concepts
and features from the state of art, in order to provide a unified security policy framework.

Figure 1 shows the relationship between ANASTACIA and the most suitable projects or frameworks according
on the ANASTACIA requirements. As it can be seen, from our point of view, the policy abstraction in two
levels is reused and extended by SECURED from the xCIM-SPL/SDL concepts, in order to generate their owns
High-level and Medium-level policy languages. Later the I2NSF reuses and extends concepts from SECURED,
specially exploding the capability concept, and flow policy rules, but in this case providing an ECA approach.
ANASTACIA then extends the HSPL/MSPL policy models since they already provide a good base of specific
multi-domain security policies, providing more capabilities and security concepts, as well as providing policy
for orchestration properties in the policy itself. Besides, the ECA concept has been adopted and included to
HSPL/MSPL models in order to be able dealing not only with conditions and actions, but even events. Finally,
the policy for orchestration is supervised by a rule engine based on the new extended models.

Page 12 of 63

Figure 1: Policy Models Relationship

In this way, ANASTACIA’s policy related main contributions reside in the unification of relevant, new and
extended capability-based security policy models (including ECA features), as well as policy orchestration
and conflict detection mechanisms. All the former under a unique policy framework.

The following text highlights the extended and the new features for the ANASTACIA HSPL/MSPL policy
models. Some of them has been categorized as new since there were not policy models defined in SECURED
for them.

Extended Security Policy Features:

• HSPL general schema: Actions and objects have been extended in order to represent the new kind of
elements for the new security policies. Purpose and resources model have been extended in order to
represent key-value pairs. Base HSPL policy model has been extended in order to provide dependences,
priority and bidirectionality.

• MSPL general schema: Capabilities has been extended in order to represent the values of the new MSPL
security policies.

• Channel Protection Policy: The policy has been extended in order to allow the representation of IoT
related technologies like the channel protection DTLS protocol.

• Filtering Policy: The policy has been extended in order to provide QoS values, as well as IoT application
layer conditions (e.g. CoAP).

• Authorization Policy: The policy has been extended in order to provide specific authentication actions
and conditions.

New Security Policy Features:

• Authentication configuration: It has been modelled an authentication policy, providing authentication
conditions and actions, including different authentication options for different methods and
mechanisms.

• Monitoring configuration policy: It has been modelled a monitoring policy which is able to provide
multiple monitoring conditions with detection filters and signatures, as well as different actions like alerts
or reports.

• Privacy: It has been modelled a privacy policy, providing specific privacy conditions and actions, including
different privacy methods like attribute based or PKI based.

• Network Anonymity: It has been modelled a network anonymity policy capable to specify different
anonymity actions and technologies like Onion routing or Traffic Mixing.

Page 13 of 63

• IoT Control: It has been modelled IoT control policies in order to perform command and control
configurations like power management.

• IoTHoneynet: It has been modelled an IoT honeynet policy which provides an IoT network and IoT devices
configuration in order to be able to replicate the IoT infrastructure configuration.

• QoS: It has been modelled a quality of service policy in order to represent different quality of service
profiles as well as its parameters.

• Data Aggregation: It has been modelled a data aggregation policy, providing to security administrators
specific configurations in order to aggregate specific the data matched in the aggregation conditions.

• Policy for Orchestration: It has been modelled the policy for orchestration which allows specifying the
deployment of multiple security policies. To this aim the policies included in a policy for orchestration
can indicate orchestration parameters like priority or dependences. They have been considered two
different kind of dependences, these are, policy dependences and event dependences. A policy
dependence indicates that a policy cannot be enforced until other policy is in a specific status. On the
other hand, an event dependence (ECA concept) indicates that a policy cannot be enforced until a specific
event occurs.

• Policy conflict detection: It has identified the main applicable conflicts to the policy for orchestration
using directly the proper policy models instead to defining a new ontology. It is also providing a policy
conflict detector by specifying generic policy rules in independent way of the rule engine.

Page 14 of 63

4 ANASTACIA ARCHITECTURE OVERVIEW
The ANASTACIA system model is structured as a set of layers that provide a broad view of the framework and
stand out its integration within IoT infrastructures. ANASTACIA is envisioned as a framework integrated on
top of an IoT infrastructure which can be managed by a system administrator by using security policies. The
whole information focused on the ANASTACIA architecture can be found on D1.3.

Figure 2: User/Orchestration Planes

Figure 2 represents a slice of the whole ANASTACIA framework, focused on the most relevant planes involved
on policy management, these are the User Plane and the Orchestration Plane.

• The User Plane includes interfaces, applications and tools that help system administrators to manage the
IoT platform through the ANASTACIA framework. For example, at this plane system admins are able to
edit the security policies that govern the underlying IoT platform.

• The Security Orchestrator Plane organizes the resources that support the Enforcement Plane, carrying
out activities such as the transformation of security properties to configuration rules and aligning the
security policies defined by the security interpreter with the provisioning of relevant security
mechanisms. It has the whole vision of the underlying infrastructure and the resources and interfaces
available at the Security Enforcement Plane.

Page 15 of 63

By the interaction between both planes, the administrator is able to define security policies and enforce them
in the underlaying architecture. In this process the following components of ANASTACIA framework are
involved:

• A Policy Editor Tool at the User plane that can be used by the User/System admin to set the Security
policy to be enforced in the IoT platform.

• An Interpreter in the Security Orchestration Plane that will transform the Security policy (closer to a
human readable policy) to a machine-readable policy that is able to represent lower configurations
parameters.

• A Security Enabler Provider in the Security Orchestration Plane, that can identify the security
enablers that can provide specific security capabilities to meet the security policies requirements.

• A Security orchestrator in the Security Orchestration Plane is responsible for selecting the security
enablers to be used in the policy refinement process and configuring the Monitoring and Reaction
Plane according to the security policy to enforce.

Once the security policies are translated in configurations for the selected security enablers, the Security
orchestrator that has the whole vision of the subjacent infrastructure is able to trigger the enforcement of
the defined policies using the corresponding configurations or tasks obtained during the policy translation
process.

Page 16 of 63

5 ANASTACIA SECURITY POLICY MODELS
ANASTACIA framework reuses and extends the security policy models from the European SECURED project
[1] which defines two levels of security policies, high and medium level security policies.

The High-level Security Policy Language (HSPL) [2] and the Medium-level Security Policy Language (MSPL) [2]
are two policy languages defined within the European SECURED project to specify security policies. HSPL is
the policy language suitable for expressing the general protection requirements of typical non-technical end-
users, such as “do not permit access to illegal content” or “block access to peer-to-peer networks”. MSPL is
an abstract language with statements related to the typical actions performed by various security controls
but expressed independent of the final devices, it means, expresses specific configurations by non-technically
users in a device-independent format, such as “deny *.sex”, “deny src 192.168”, or “inspect image/* for
malware”.

Both policy languages are based on XML and are focused on the capability concept. A capability denotes any
kind of security functionality that can be provided by a Security Enabler. A Security Enabler implements some
security controls, generally, by a software module, e.g. filtering, logging or authentication. ANASTACIA
project extends and adapt HSPL, MSPL models and capabilities by defining new security policies like traffic
divert, privacy, QoS or network anonymity in order to comply with the ANASTACIA framework objectives.

5.1 HIGH-LEVEL SECURITY POLICY LANGUAGE (HSPL)

The High-level security policy language (HSPL) is a security policy language with a high level of abstraction
which allows to model security policies regardless of the underlaying technology, being this a key feature for
the framework, allowing multiple implementations and enforcement points for the same high-level policy.
This level of abstraction also provides other important features such as allowing a non-technical end-user to
specify general protection requirements without a deep knowledge of the lower layers of the system.

Since the main idea of the HSPL is to define high level policies capable to model security requirements in
terms of who is allowed or not to apply some action over some element under some conditions, the HSPL
structure is defined and extended as:

[sbj] act obj [(field_type,value) ...(field_type,value)] [dependence] [priority]

Where the sbj indicates the subject involved in some action over an element, act represents the action to
be carried out by the subject, the obj indicates the element or resource where will be apply the action. A
set of fields and values indicate some conditions about the action in the security requirement. Finally,
dependence and priority provide relevant information regarding how the policy must be orchestrated.

5.1.1 Subject

Considering the nature of the present project, the following subjects have been considered in order to
represent the main actors of the ANASTACIA framework:

• Specific user: e.g. Alice.

• User group: e.g. Administrators.

• Specific device/VNF: e.g. Sensor-A.

• Device/VNF group: e.g. 1st floor sensors.

Page 17 of 63

5.1.2 Action

For the scope of ANASTACIA, it has been considered the following set of HSPL actions, which allows the
modelling of security policies capable of enforcing the main security requirements identified in the use cases:

• Authorized/No Authorized to access: Indicates if the subject will be able to access or not to some
element or resource.

• Configure authentication: Indicates that the subject must be configured using a specific
authentication mechanism.

• Configure privacy: The subject must apply some kind of privacy against a target.

• Enable: Action which activates or deactivate some element or resource.

• Protect confidentiality integrity: To guarantee communication´s confidentiality and integrity.

• Configure Monitoring: It must be performed a monitoring in the specified subject, looking for a
specific pattern.

• Configure QoS: Indicates that it is required a specific Quality of Service for the subject resources.

• Data Aggregation: It is required to perform a data aggregation from different sources.

• Configure Network Anonymity: It is necessary to perform a configuration in order to anonymize the
subject at network level.

5.1.3 Object

As for the element or resource where the action will be performed, the following set of HSPL objects has
been considered. The objects correspond to the main use cases of the ANASTACIA project are:

• All traffic: Whatever kind of traffic.

• PANA Traffic: Traffic for PANA authentication.

• CoAP-EAP Traffic: Traffic for specific IoT light way authentication.

• CoAP Traffic: Traffic for the Constrained Application protocol.

• ICMP Traffic: Traffic for ICMP.

• Resource: The element/object where the action is performed.

5.1.4 Field condition

The field conditions establish the constraints about the action to perform. HSPL defines several kinds of
conditions of which we are using the following ones:

• Time: To specify timing conditions, e.g. the security requirement duration.

• Specific URL: Concrete URL or website.

• Type of content: Specific content affected by the policy.

• Traffic target: Specific target affected by the policy.

• Purpose: Specific purpose of the condition e.g. specific method or parameter of the request.

• Resource value: The specific resource.

5.1.5 Dependence, priority and Enabler candidates

Dependence and priority allow establishing dependence relationship between HSPL policies, as well as the
magnitude of the security policy respect the other ones. These features are very useful to provide policies
for orchestration from the high-level approach. A dependence has been categorized as:

• Policy dependence: A high-level security policy depends on the refinement, translation or
enforcement of another one.

• Event dependence: A high-level security policy depends on some kind of event in the system (e.g.
Authentication success).

Page 18 of 63

5.1.6 Combining HSPL components

This section exposes how the HSPL components, which are, subject, action, object and condition fields can
be combined to build a complete HSPL policy. Table 2 shows the combination among the actions and the
possible objects for the HSPL applied on the ANASTACIA framework.

Action/Object

A
ll

tr
af

fi
c

In
te

rn
et

 t
ra

ff
ic

In
tr

an
et

 t
ra

ff
ic

C
o

A
P

 t
ra

ff
ic

IC
M

P
 t

ra
ff

ic

P
A

N
A

 t
ra

ff
ic

C
o

A
P

-E
A

P
 t

ra
ff

ic

R
e

so
u

rc
e

Authorized/No Authorized to
access

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Configure authentication ✓ ✓

Enable ✓

Protect confidentiality integrity ✓ ✓ ✓ ✓

Configure Privacy ✓

Configure Monitoring ✓ ✓ ✓ ✓ ✓ ✓ ✓

Configure QoS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data Aggregation ✓ ✓

Configure Network Anonymity ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: HSPL Action - Object combination

Table 3 shows the possible combinations of the conditional fields and objects for the HSPL components in
ANASTACIA framework.

Field/Object

A
ll

tr
af

fi
c

In
te

rn
et

 t
ra

ff
ic

In
tr

an
et

 t
ra

ff
ic

C
o

A
P

 t
ra

ff
ic

IC
M

P
 t

ra
ff

ic

P
A

N
A

 t
ra

ff
ic

C
o

A
P

-E
A

P
 t

ra
ff

ic

R
e

so
u

rc
e

Traffic Target ✓ ✓ ✓ ✓ ✓ ✓

Purpose ✓ ✓ ✓

Resource value ✓

Page 19 of 63

Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Specific URL ✓ ✓ ✓ ✓

Type of content ✓ ✓ ✓ ✓

Table 3: HSPL Field - Object combination

5.1.7 HSPL example

According to the exposed combinations of the components for the HSPL in previous sections, here is shown
a simple example in order to model the sentence:

IoT-lab is authorized to access PANA traffic
(time period, {08:00-18:00 GMT+1})

That sentence is modelled in XML as the following, specifying the subject and the identification of the HSPL
as attribute of the XML element.

<hspl subject='IoT-lab' id='HSPL0' >

 <action>authorise_access</action>

 <objectH>PANA_traffic</objectH>

 <fields>

 <traffic_target>

 <target_name>PANA_AGENT</target_name>

 </traffic_target>

 <time_period time-zone='UTC'>

 <interval_time >

 <time_hours start-time='08:00:00' end-time='18:00:00'/>

 </interval_time>

 </time_period>

 </fields>

</hspl>

Figure 3: HSPL example

Figure 3 indicates that the IoT-lab, as subject, is authorized to access, as action, PANA traffic, as object, against
the PANA_AGENT as target, during a certain period of time as a condition field. As it can be seen, this level
only expresses a security requirement without technical or deeper specific implementation information.

5.2 MEDIUM-LEVEL SECURITY POLICY LANGUAGE (MSPL)

The Medium-level security policy language (MSPL) is a security policy language with a medium level of
abstraction. It is still independent on the underlaying technology, but closer to it than an HSPL one. This is, it
provides in general way a set of actions suitable by the most common applicable security settings (e.g.
ALLOW or DENY IP_ADDRESS sentences), which is also interesting for technical users.

Regarding the structure of MSPL, the main element is the ITResource, which is explained following.

5.2.1 IT Resource

ITResource intends to represent the configuration of a piece of software or hardware (thereinafter Security
Enabler) capable to applying the enforcement of the security policy. Each ITResource is able to represent
Configurations, Dependences, Priorities and EnablerCandidates.

Page 20 of 63

5.2.1.1 Configuration

A configuration is composed by Capabilities and the required Configuration Rules in order to configure the
future security enabler who will implement the capability.

5.2.1.1.1 Capabilities

The concept of capability exposes a kind of security functionality which can be provided by a Security Enabler.
For instance, if the ANASTACIA framework offers a Security Enabler capable of performing filtering actions,
it must implement a filtering capability and it must be ready to be configured with the most common filtering
fields, e.g. source address, destination address and so on. According to the main identified use cases, Table
4 shows the main identified ANASTACIA framework capabilities:

Capability Description Enabler example

AUTHORISE_ACCESS_RESOURCE
Authorizes access to a

specific resource.
PDP (XACML)

AUTHENTICATION
Allows configure the

authentication mechanism.
PANA AGENT

PRIVACY
Allows activate some privacy

techniques.
CPAB

FILTERING_L3
The Security enabler is able

to perform filtering
operations up to level 3.

OVS

FILTERING_L4
The Security enabler is able

to perform filtering
operations up to level 4.

OVS

TRAFFIC_DIVERT
The Security Enabler is able

to perform traffic divert
operations.

OVS

TRAFFIC_INSPECTION_L7
The Security Enabler is able

to inspect the network traffic
up to level 7.

SNORT

NETWORK_TRAFFIC_ANALYSIS
The Security Enabler is able

to analyse the network
traffic.

SNORT

PROTECTION_CONFIDENTIALITY_INTEGRITY

The Security Enabler is able
to prepare secure

connections using specific
configurations.

Apache SSL

DTLS_PROTOCOL
The Security Enabler is able

to prepare DTLS connections
using specific configurations.

DTLS-Proxy

Page 21 of 63

IOT_CONTROL

The Security Enabler is able
to perform command and

control operations over the
IoT domain.

IoT Controller

IOT_HONEYNET
The Security Enabler is able

to deploy and manage a
virtual IoT-Honeynet.

Cooja agent

QoS
The Security Enabler is able
to provide a specific Quality

of Service.
OVS

NETWORK_ANONYMITY
The Security Enabler is able

to provide anonymity at
network level

TOR

DATA_AGGREGATION

The Security Enabler is able
to aggregate the data

received from multiple
sources

Kafka Broker

Table 4: Capabilities

5.2.1.1.2 Configuration Rule

The configuration rule element denotes an abstract set of configuration settings which are independent to
the final Security Enablers. Specifically, a configuration rule is composed by Conditions and Actions. In
semantic terms, this modelling allows to specify that if the conditions are accomplished, it must be triggered
the action. Since different capabilities could require distinct kind of configurations, the schema provides a
hierarchical approach with inheritance for actions and conditions.

5.2.1.1.2.1 Conditions

A condition models a set of fields in order to represent the values that the subject must satisfy in order to
carry out the action. According on the capabilities, the main conditions can be:

• Authentication Condition: Able to represent fields like the authentication subject.

• Authorization Condition: It allows to represent fields like the source, destination and the specific
resource to access.

• Filtering Configuration Condition: Able to represent fields related to filtering e.g. source address,
source port and so on.

• Traffic Divert Configuration Condition: It allows to represent the network traffic conditions in order
to perform the traffic divert action.

• Data Protection Condition: Allowing to specify integrity and/or encryption mechanism.

• Monitoring Configuration Condition: Able to represent specific monitoring fields like attack
signatures.

• Privacy Condition: It allows specifying fields like who will be the subject of the privacy.

• QoS Condition: It allows providing specific QoS fields like the QoS profile or throughput.

• Anonymity Configuration Condition: It allows to represent network data of the subject that must be
satisfied in order to perform the anonymity action.

Page 22 of 63

5.2.1.1.2.2 Actions

An action models a set of fields in order to configure the specific action to be carried out once the conditions
are satisfied. According on the capabilities, the main actions can be:

• vIoT-HoneyNet Action: It allows specifying an IoT-Honeynet action like deploy or remove the IoT-
honeynet specified in the model.

• Traffic Divert Action: It specifies the action for the traffic divert, e.g. forward.

• Filtering Action: The action for the filtering condition, e.g. allow or deny.

• Power Management Action: It specifies actions related on power management like turn off or reset
the devices.

• Data Protection Action: The action specifies how must be configured the channel protection.

• Privacy Action: It allows specifying the privacy configuration.

• Authorization Action: It specifies the action for the authorization like allow or deny.

• Authentication Action: It specifies the authentication mechanism, methods and parameters.

• Monitoring Action: It allows represent fields like the monitoring action type, reports and so on.

• QoS Action: It specifies the QoS action like specifying a profile, bandwidth…

• Anonymity Action: It specifies the anonymity action type, including the anonymity technology
parameters depending on the nature of the anonymity solution.

5.2.1.2 Dependences, priority and Enabler candidates

In the same way as in HSPL, dependence and priority allow establishing dependence relationship between
MSPL policies, as well as magnitude of the security policy respect the other ones in order to provide policies
for orchestration from the medium-level approach. A dependence has been categorized as:

• Policy dependence: A medium-level security policy depends on the translation or enforcement of
another one.

• Event dependence: A medium-level security policy depends on some kind of event in the system
(e.g. Authentication success).

Regarding the Enabler candidates, this field represents a set of Security Enablers which implements the
capabilities required by the security policy. For instance, if the security policy requires traffic filtering, the
security enabler candidates could be those related with networking management like SDN controllers,
IPTables, specific firewalls…

5.2.2 MSPL Components relationship

Figure 4 shows the relationship among the main MSPL components. The ITResource represents the Security
Enabler configuration, the priority, dependences and enabler candidates which will be able to enforce a
configuration. Regarding the configuration, it contains the capability or capabilities required by the policy,
and it is extended as a set of rules. This rule set is composed by configuration rules, and these will provide
configuration rule actions and conditions. The configuration rule actions are extended in the action specific
action to perform e.g. FilteringAction, specifying the action type. On the other hand, the configuration
conditions are extended in order to represent the specific conditions that must be accomplished, e.g. The
address which will be affected by the action.

Page 23 of 63

Figure 4: ANASTACIA-MSPL Scheme

Next section provides an example including an XML code where it can be observed in a practical way an
instantiation of the main diagram elements.

5.2.3 MSPL Example

According to the exposed components for the MSPL, here is shown a simple example corresponding to the
following HSPL sentence:

IoT-lab is authorized to access PANA traffic
(time period, {08:00-18:00 GMT+1})

The process of how is refined a HSPL into a MSPL policy it is explained in D2.1. At this point we will focus on
the MSPL definition for the specified example.

<ITResource ID="MSPL_f9b27422-15b3-4bb5-ad21-3e08af5b1a1c">

 <configuration xsi:type="RuleSetConfiguration">

 <capability>

 <Name>Timing</Name>

 </capability>

 <capability>

 <Name>Traffic_Divert</Name>

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='TrafficDivertAction' >

Page 24 of 63

 <TrafficDivertActionType>FORWARD</TrafficDivertActionType>

 <packetDivertAction>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <Interface>7</Interface>

 </packetFilterCondition>

 </packetDivertAction>

 </configurationRuleAction>

 <configurationCondition

 xsi:type='TrafficDivertConfigurationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress> 2001:720:1710:4::0/64</SourceAddress>

 <SourcePort>5678</SourcePort>

 <ProtocolType>UDP</ProtocolType>

 </packetFilterCondition>

 <timeCondition>

 <Weekday></Weekday>

 <Time>08:00-19:00,</Time>

 </timeCondition>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>60000</value>

 </externalData>

 </configurationRule>

 <Name>Conf0</Name>

 </configuration>

</ITResource>

Figure 5: MSPL Example

Figure 5 shows a MSPL policy example for traffic divert in a specific timing interval, so the ITResource
represents a Security Enabler with timing and traffic divert capabilities. Regarding the condition and action,
the MSPL models that the UDP datagrams with the specified source port and source Ipv6 address must be
forwarded through the specified interface.

5.3 SECURITY POLICY MODELS DEFINITION

This section illustrates the policy models for High-level Security Policy Language and Medium-level Security
Policy Language adapted and extended to the ANASTACIA framework.

5.3.1 HSPL

The HSPL model is compounded by several complex types. Following it is explained the most relevant model
components. The main complex type for the HSPL policy model is the hspl itself, which, as can be observed
in Figure 6, we are highlighting the action, object, generic fields, dependences, enabler candidates, the
identifier of the HSPL in order to provide traceability, and finally, the subject as attribute of the type.

<complexType name="hspl">

 <sequence>

 <element name="action" type="tns:action" minOccurs="1" maxOccurs="1"/>

 <element name="objectH" type="tns:objectH" minOccurs="1" maxOccurs="1"/>

 <element name="fields" type="tns:fields" minOccurs="0" maxOccurs="1"/>

 <element name="dependences" type="tns:dependences" minOccurs="0"

 maxOccurs="1"/>

 <element name="candidates" type="tns:candidates" minOccurs="0"

 maxOccurs="1"/>

 </sequence>

 <attribute name="subject" type="string" use="optional"></attribute>

 <attribute name="id" type="ID" use="required"></attribute>

Page 25 of 63

</complexType>

Figure 6: HSPL Complex Type

Action is a simple string type constrained to specific values which has been extended for ANASTACIA. Figure
7 shows the most relevant actions applicable to the ANASTACIA framework according to the main identified
policies.

<simpleType name="action">

 <restriction base="string">

 <enumeration value="authorise_access"></enumeration>

 <enumeration value="no_authorise_access"></enumeration>

 <enumeration value="enable"></enumeration>

 <enumeration value="prot_conf_integr"></enumeration>

 <enumeration value="config_authentication"></enumeration>

 <enumeration value="config_privacy"></enumeration>

 <enumeration value="config_monitoring"></enumeration>

 <enumeration value="config_qos"></enumeration>

 <enumeration value="data_aggregation"></enumeration>

 <enumeration value="config_network_anonymity"></enumeration>

 …

 </restriction>

</simpleType>

Figure 7: Action Simple Type

Regarding the objectH type, it is also a simple string type like the previous one. Figure 8 shows the string
restriction for main values related with the ANASTACIA framework which are mainly related with kind of
traffic and resources.

<simpleType name="objectH">

 <restriction base="string">

 <enumeration value="AllTraffic"></enumeration>

 <enumeration value="Internet_traffic"></enumeration>

 <enumeration value="Intranet_traffic"></enumeration>

 <enumeration value="PANA_traffic"></enumeration>

 <enumeration value="CoAP_traffic"></enumeration>

 <enumeration value="CoAP-EAP_traffic"></enumeration>

 <enumeration value="ICMP_traffic"></enumeration>

 <enumeration value="resource"></enumeration>

 …

 </restriction>

</simpleType>

Figure 8: Object Simple Type

Fields type is a complex type composed by a sequence of other complex types which provide to the field
more accuracy for the high-level security policy specification.

<complexType name="fields">

 <sequence>

 <element name="time_period" type="tns:time_period" minOccurs="0"

 maxOccurs="1"/>

 <element name="traffic_target" type="tns:traffic_target" minOccurs="0"

 maxOccurs="1"/>

 <element name="specific_URL" type="tns:specific_URL" minOccurs="0"

 maxOccurs="1"/>

 <element name="type_content" type="tns:type_Content" minOccurs="0"

 maxOccurs="1"/>

 <element name="purpose" type="tns:purpose" minOccurs="0" maxOccurs="1"/>

 <element name="resource_values" type="tns:resource_values" minOccurs="0"

 maxOccurs="1"/>

 </sequence>

Page 26 of 63

</complexType>

Figure 9: Fields Complex Type

Figure 9 shows the main components for the fields complex type. Time period is a complex type which
allows specifying a time interval, including days and time hours. Traffic target, specific URL, type content,
purpose and the resource values are complex types formed by a sequence of simple string types providing
some flexibility for the high-level policy specification. Some of them have been extended in order to
represent key-value pairs.

Regarding the high-level security policy Dependences, both aforementioned, policy dependence and event
dependence inherit from Dependence and both contains a DependenceCondition which must be solved
in order to satisfy the dependence. Figure 10 shows the model fields in order to specify that an HSPL policy
depends on the status of another one, where policyID codifies a high-level security policy identifier.

<complexType name="PolicyDependence">

 <complexContent>

 <extension base="tns:Dependence" >

 <sequence>

 <element name="dependenceCondition" type="tns:PolicyDependenceCondition"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="PolicyDependenceCondition">

 <complexContent>

 <extension base="tns:DependenceCondition" >

 <sequence>

 <element name="policyID" type="string"/>

 <element name="status" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 10: Policy Dependence

On the other hand, Figure 11 shows a dependence which is solved by a specific event. The kind of event is
identified by the eventID and it is verified against the EventDependenceCondition which is composed
by the main fields of a high-level security policy, providing the subject, action, object and fields.

<complexType name="EventDependence">

 <complexContent>

 <extension base="tns:Dependence" >

 <sequence>

 <element name="eventID" type="string"/>

 <element name="dependenceCondition" type="tns:DependenceCondition"

 minOccurs="0" maxOccurs="1"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="EventDependenceCondition">

 <complexContent>

 <extension base="tns:DependenceCondition" >

 <sequence>

 <element name="subject" type="string"></element>

 <element name="action" type="tns:action" minOccurs="0"></element>

 <element name="objectH" type="tns:objectH" minOccurs="0"></element>

 <element name="fields" type="tns:fields"></element>

Page 27 of 63

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 11: Event Dependence

Regarding the Candidates, Figure 12 shows the candidates field which represents a list of candidates,
where a Candidate is composed by its name and a priority, allowing to establish an index of suitability
between them.

<complexType name="Candidates">

 <sequence>

 <element name="candidate" type=" tns:Candidate"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

</complexType>

<complexType name="Candidate">

 <sequence>

 <element name="name" type="string"/>

 <element name="priority" type="integer"/>

 </sequence>

</complexType>

Figure 12: Enabler Candidates

The following section exposes the security policy model definition regarding the main identified policies on
ANASTACIA framework.

5.3.2 MSPL

In the same way as HSPL, the Medium-level Security Policy Language is also composed by different complex
types, but this time, the main component is not an MSPL policy, but an ITResourceType.

<complexType name="ITResourceType">

 <sequence>

 <element maxOccurs="1" minOccurs="1" name="configuration"

 type="ITResource:Configuration"/>

 <element maxOccurs="1" minOccurs="0" name="priority" type="integer"/>

 <element maxOccurs="1" minOccurs="0" name="dependences"

 type="ITResource:Dependences">

 <element maxOccurs="1" minOccurs="0" name="enablerCandidates"

 type="ITResource:EnablerCandidates"></element>

 </sequence>

 <attribute name="ID" type="string"></attribute>

</complexType>

Figure 13: ITResource type

Figure 13 shows the ITResourceType definition, which contains an abstract (non-implementation specific)
configuration for a Security Enabler. As in the HSPL case, they have been also included the priority,
dependences and enablerCandidates, as well as an identifier in order to provide traceability for the
MSPL.

<complexType name="Configuration">

 <sequence>

 <element maxOccurs="unbounded" minOccurs="1" name="capability"

type="ITResource:Capability"/>

 </sequence>

</complexType>

Page 28 of 63

Figure 14: ITResource configuration

Figure 14 shows the Configuration definition for an ITResource, which is composed by a sequence of the
required capability list to enforce the security policy. Figure 15 shows the Capability definition, which
is composed by a CapabilityType. The latter is a simple string type restricted to the main set of values
used on ANASTACIA.

<complexType name="Capability">

 <sequence>

 <element maxOccurs="1" minOccurs="1" name="Name"

 type="ITResource:CapabilityType"></element>

 </sequence>

</complexType>

<simpleType name="CapabilityType">

 <restriction base="string">

 <enumeration value="Filtering_L3"/>

 <enumeration value="Filtering_L4"/>

 <enumeration value="Timing"/>

 <enumeration value="TrafficInspection_L7"/>

 <enumeration value="Network_traffic_analysis"/>

 <enumeration value="Protection_confidentiality"/>

 <enumeration value="Protection_integrity"/>

 <enumeration value="AuthoriseAccess_resurce"/>

 <enumeration value="Authentication"/>

 <enumeration value="Traffic_Divert"/>

 <enumeration value="IoT_control"/>

 <enumeration value="DTLS_protocol"/>

 <enumeration value="IoT_honeynet"/>

 <enumeration value="Privacy"/>

 <enumeration value="Anonymity"/>

 <enumeration value="QoS"/>

 <enumeration value="Data_aggregation"/>

 </restriction>

</simpleType>

Figure 15: Capability Complex Type

To provide the configuration rules, the Configuration is used as base class, which is extended in order to
model a RuleSetConfiguration.

<complexType name="RuleSetConfiguration">

 <complexContent>

 <extension base="ITResource:Configuration">

 <sequence>

 <element maxOccurs="unbounded" minOccurs="0" name="configurationRule"

 type="ITResource:ConfigurationRule"/>

 <element maxOccurs="1" minOccurs="1" name="Name" type="string"/>

 </sequence>

 </extension>

</complexContent>

Figure 16: RuleSetConfiguration

Figure 16 shows the components of the rule set configuration, which is basically a set of ConfigurationRule
and a name or description. A ConfigurationRule allows modelling a specific rule. As it can be observed
in Figure 17, it is achieved by indicating mainly a configurationRuleAction and a
configurationCondition. On the other hand, the field isCNF indicates if the rule must be satisfied
completely, or it is enough satisfying any field.

<complexType name="ConfigurationRule">

 <sequence>

Page 29 of 63

 <element maxOccurs="1" minOccurs="1" name="configurationRuleAction"

 type="ITResource:ConfigurationAction"/>

 <element maxOccurs="1" minOccurs="1" name="configurationCondition"

 type="ITResource:ConfigurationCondition"/>

 <element maxOccurs="1" minOccurs="1" name="Name" type="string"/>

 <element maxOccurs="1" minOccurs="1" name="isCNF" type="boolean"/>

 </sequence>

</complexType>

Figure 17: ConfigurationRule

Since the policy model allows the inheritance, the actions and conditions can be instantiated in different
ways depending on the security policy. This is, some actions and conditions have been extended as well as
new specific actions and conditions have been defined for new specific security policies in the ANASTACIA
framework like, authentication, authorization, privacy, monitoring, traffic divert, QoS, anonymity or the IoT
related ones. Following it is shown the security policy model definitions regarding the main identified policies
on ANASTACIA framework for the Medium-level Security Policy Language.

5.3.2.1 Filtering Policy

MSPL filtering policy models are intended to represent networking related information configuration. Figure
18 shows how the base configuration condition is extended, allowing to establish specific networking
parameters like packetFilterCondition, statefulCondition, timeCondition,
applicationLayerCondition and qosCondition (the latter will be explained in the QoS policy
section).

<complexType name="FilteringConfigurationCondition">

 <complexContent>

 <extension base="ITResource:ConfigurationCondition">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="packetFilterCondition"

 type="ITResource:PacketFilterCondition"/>

 <element maxOccurs="1" minOccurs="0" name="statefulCondition"

 type="ITResource:StatefulCondition"/>

 <element maxOccurs="1" minOccurs="0" name="timeCondition"

 type="ITResource:TimeCondition"/>

 <element maxOccurs="1" minOccurs="0" name="applicationLayerCondition"

 type="ITResource:ApplicationLayerCondition"/>

 <element maxOccurs="1" minOccurs="0" name="qosCondition"

 type="ITResource:QoSCondition"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 18: FilteringConfigurationCondition

Figure 19 shows the modelling of PacketFilterCondition related fields, these are, source address,
destination address, source and destination ports, the direction of the connection establishment, the
interface and the protocol type.

<complexType name="PacketFilterCondition">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="SourceAddress" type="string"/>

 <element maxOccurs="1" minOccurs="0" name="DestinationAddress"

 type="string"/>

 <element maxOccurs="1" minOccurs="0" name="SourcePort" type="string"/>

 <element maxOccurs="1" minOccurs="0" name="DestinationPort" type="string"/>

 <element maxOccurs="1" minOccurs="0" name="direction" type="string"/>

 <element maxOccurs="1" minOccurs="0" name="Interface" type="string"/>

Page 30 of 63

 <element maxOccurs="1" minOccurs="0" name="ProtocolType" type="string"/>

 </sequence>

</complexType>

Figure 19: PacketFilterCondition

The ApplicationLayerCondition showed in Figure 20 exposes several fields related with the application
layer, this is, fields related with the level four and above in the OSI stack, as they can be, the URL, the specific
HTTP method, the file extension as well as the mime type.

<complexType name="ApplicationLayerCondition">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="URL" type="string"/>

 <element maxOccurs="1" minOccurs="0" name="httpMethod" type="string"/>

 <element maxOccurs="1" minOccurs="0" name="fileExtension" type="string"/>

 <element maxOccurs="1" minOccurs="0" name="mimeType" type="string">

 <element maxOccurs="1" minOccurs="0" name="phrase" type="string"/>

 </sequence>

 </complexType>

Figure 20: Application Layer Condition

Regarding the FilteringAction, Figure 21 uses a FilteringActionType which is a restricted string in
order allow or deny the traffic specified in the filtering condition.

<complexType name="FilteringAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="FilteringActionType"

 type="ITResource:FilteringActionType"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 21: FilteringAction

By using specific filtering configuration conditions fields, the user is able to model filtering policies according
to different purposes and protocols. Due to its flexibility to represent the network information, the filtering
condition has been reused and extended for other security policies.

5.3.2.2 Traffic Divert

MSPL traffic divert policy models are intended to represent different traffic divert operations like traffic
forwarding or traffic mirroring. Figure 22 shows the TrafficDivertConfigurationCondition definition.
Since the required fields in order to perform a matching against network datagrams is the same that in
filtering case, the complex type is just inheriting the FilteringConfigurationCondition.

<complexType name="TrafficDivertConfigurationCondition">

 <complexContent>

 <extension base="ITResource:FilteringConfigurationCondition" />

 </complexContent>

</complexType>

Figure 22: TrafficDivertConfigurationCondition

Regarding the TrafficDivertAction, Figure 23 shows that it is composed by a
TrafficDivertActionType and a packetDivertAction. The first one defines the type of traffic divert
operation while the second one allows specifying the new parameters for the network datagrams.

<complexType name="TrafficDivertAction">

 <complexContent>

Page 31 of 63

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="TrafficDivertActionType"

 type="ITResource:TrafficDivertActionType" />

 <element maxOccurs="1" minOccurs="1" name="packetDivertAction"

 type="ITResource:TrafficDivertConfigurationCondition" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

<simpleType name="TrafficDivertActionType">

 <restriction base="string">

 <enumeration value="FORWARD"></enumeration>

 <enumeration value="MIRRORING"></enumeration>

 </restriction>

</simpleType>

Figure 23: TrafficDivertAction

It is important to highlight that the TrafficDivertAction is easily extensible to taking into account new
action type specific parameters.

5.3.2.3 Access control Policy

MSPL access control policy models are intended to provide access control configuration at medium-level.
With this purpose they have been modelled two different kind of policies, these are, authentication policies
and authorization policies.

5.3.2.3.1 Authentication

The authentication policy model allows specifying the required parameters in order to configure an
authentication method for a subject. In order to represent it, they have been defined the specific
Authentication action and condition.

<complexType name="AuthenticationCondition">

 <complexContent>

 <extension base="ITResource:FilteringConfigurationCondition">

 <sequence>

 <element name="AuthenticationSubject" type="string" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 24: Authentication Condition

Figure 24 shows the new condition defined for authentication, which extends the
FilteringConfigurationCondition in order to provide network information about the subject, as well as
the proper AuthenticationSubject that is able to represent some kind of extra identification about the
subject. The AuthenticationCondition then represents the condition must be accomplished by the subject
in order to apply the authentication action.

<complexType name="AuthenticationAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="AuthenticationOption"

 type="ITResource:AuthenticationOption" maxOccurs="unbounded" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

Page 32 of 63

<complexType name="AuthenticationOption">

 <sequence>

 <element name="AuthenticationTarget"

 type="ITResource:PacketFilterCondition" />

 <element name="AuthenticationMethod" type="string" />

 <element name="AuthenticationMechanism" type="string" />

 <element name="AuthenticationParameters"

 type="ITResource:AuthenticationParameters"/>

 </sequence>

</complexType>

Figure 25: Authentication Action

Figure 25 shows the new AuthenticationAction which is composed by a sequence of
AuthenticationOption. This list of authentication options defines an AuthenticationTarget in order to
specify the target of the authentication (it reuses the PacketFilterCondition), an AuthenticationMethod,
and AuthenticationMechanism in order to specify the type of authentication must be used as well as
AuthenticationParameters (reusing the AuthenticationParameters field for the condition), which is able
to represent specific authentication parameters like certificates, ids or key locations.

5.3.2.3.2 Authorization policy

The authorization policy model allows specifying the required parameters in order to authorize or
unauthorize to a subject to perform a specific action over a specific resource. In the same way as the previous
case, they have been defined a new action and condition as well as the action types.

<complexType name="AuthorizationCondition">

 <complexContent>

 <extension base="ITResource:FilteringConfigurationCondition">

 <sequence>

 <element name="AuthorizationSubject" type="string" minOccurs="0" />

 <element name="AuthorizationTarget" type="string" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 26: AuthorizationCondition

Figure 26 shows the new condition for the authorization capability, which extends the
FilteringConfigurationCondition by adding AuthorizationSubject and AuthorizationTarget in
order to provide more information for the subject and target like subject or target identifiers. By the filtering
configuration condition extension, it is able to indicate all the information regarding the endpoint who
requires authorization.

<complexType name="AuthorizationAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="AuthorizationActionType"

 type="ITResource:AuthorizationActionType"/>

 </sequence>

 </extension>

</complexContent>

</complexType>

 <simpleType name="AuthorizationActionType">

 <restriction base="string">

 <enumeration value="ALLOW"></enumeration>

 <enumeration value="DENY"></enumeration>

 </restriction>

Page 33 of 63

</simpleType>

Figure 27: Authorization Action

Figure 27 shows the new AuthorizationAction which provides an AuthorizationActionType where it is
possible to specify a restricted set of actions. Currently, the model is able to specify if the subject will be able
or not to access to the specified resource.

5.3.2.4 Channel Protection Policy

MSPL channel protection policy models are intended to specify channel protection configurations in
independent way of the underlaying implementation. To model channel protection policies, Figure 28 shows
the DataProtectionCondition, which uses the packet filter condition to define the source and destination
involved in the channel protection.

<complexType name="DataProtectionCondition">

 <complexContent>

 <extension base="ITResource:ConfigurationCondition">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="packetFilterCondition"

 type="ITResource:PacketFilterCondition" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 28: DataProtectionCondition

Figure 29 shows the main components for the DataProtectionAction. These are, the technology involved,
described as string, the technologyActionParameters and a sequence of
technologyActionSecurityProperty.

<complexType name="DataProtectionAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="technology" type="string"/>

 <element maxOccurs="1" minOccurs="1" name="technologyActionParameters"

 type="ITResource:ActionParameters"/>

 <element maxOccurs="unbounded" minOccurs="0"

 name="technologyActionSecurityProperty"

 type="ITResource:TechnologyActionSecurityProperty"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 29: Data Protection Action

The technologyActionParameters field extends ActionParameters which is defined in Figure 30. The
keyExchange parameter allows specifying values like the key exchange action, the hash algorithm to use, the
symmetric encryption algorithm as well as the authentication type. The authenticationParameters allow
the user to model important information for the authentication process as the Pre-Shared Key value or its
path, the certificate for the Certification Authority, the public key information, this is, all necessary data to
carry on an authentication process using certificates or pre-shared keys.

<complexType name="ActionParameters">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="keyExchange"

 type="ITResource:KeyExchangeParameter"/>

 <element maxOccurs="unbounded" minOccurs="1" name="technologyParameter"

 type="ITResource:TechnologySpecificParameters"/>

Page 34 of 63

 <element maxOccurs="1" minOccurs="0" name="authenticationParameters"

 type="ITResource:AuthenticationParameters"/>

 </sequence>

</complexType>

Figure 30: Action Parameters

The technologyParameter which is the type TechnologySpecificParameters is extended depending on
specific technologies in order to provide fields dependant on technology, e.g. IPsecTechnologyParameter,
DTLSTechnologyParameter and so on. On the other hand, the technologyActionSecurityProperty is
extended depending on the expecting action, e.g. Integrity, Authentication and Confidentiality,
providing different fields for each of them.

5.3.2.5 Privacy Policy

MSPL privacy policy models are intended to specify privacy configurations, including multiple privacy
methods in independent way of the underlaying implementation. Figure 31 shows the specific configuration
condition for the privacy policy which is able to specify the Subject and Target of the policy, as well as the
network configuration for the matching.

<complexType name="PrivacyConfigurationCondition">

 <complexContent>

 <extension base="ITResource:FilteringConfigurationCondition">

 <sequence>

 <element name="Subject" type="string" minOccurs="0" />

 <element name="Target" type="string" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 31: PrivacyConfigurationCondition

Regarding the privacy action, Figure 32 shows the action for the privacy policy, which is composed by a
PrivacyActionType and a PrivacyMethod. The privacy action type allows specify the kind of privacy (e.g.
data privacy).

<complexType name="PrivacyAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="PrivacyActionType"

 type="ITResource:PrivacyActionType" minOccurs="1" />

 <element name="PrivacyMethod" type="ITResource:PrivacyMethod"

 minOccurs="1" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 32: Privacy Action

On the other hand, the PrivacyMethod is extended in order to model different kind of privacy methods.
Actually, it has been extended in order to provide PrivacyIBMethod, PrivacyABMethod and
PrivacyPKIMethod as can be shown in Figure 33.

<complexType name="PrivacyIBMethod">

 <complexContent>

 <extension base="ITResource:PrivacyMethod">

 <sequence>

 <element name="IB" type="string" />

 </sequence>

Page 35 of 63

 </extension>

 </complexContent>

</complexType>

<complexType name="PrivacyABMethod">

 <complexContent>

 <extension base="ITResource:PrivacyMethod">

 <sequence>

 <element name="attribute" type="ITResource:KeyValue"

 maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="PrivacyPKIMethod">

 <complexContent>

 <extension base="ITResource:PrivacyMethod">

 <sequence>

 <element name="pkiParameters"

 type="ITResource:AuthenticationParameters"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 33: Privacy methods

PrivacyIBMethod is able to model the identity required in an identity-based privacy method.
PrivacyABMethod allows model a list of key-value attribute pairs for the attribute-based privacy method.
Finally, the PrivacyPKIMethod specifies a set of pkiParameters by extending the
AuthenticationParameters field.

5.3.2.6 Monitoring Policy

MSPL monitoring policy models are intended to specify monitoring configurations allowing to establish the
monitoring parameters in independent way of the underlaying technology. This is, providing generic
monitoring fields which can be implemented by different monitoring enablers.

<complexType name="MonitoringConfigurationConditions">

 <complexContent>

 <extension base="ITResource:ConfigurationCondition">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="ProbeID"

 type="string"></element>

 <element maxOccurs="unbounded" minOccurs="1"

 name="monitoringConfigurationCondition"

 type="ITResource:MonitoringConfigurationCondition">

 </element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="MonitoringConfigurationCondition">

 <complexContent>

 <extension base="ITResource:FilteringConfigurationCondition">

 <sequence>

 <element maxOccurs="1" minOccurs="0"

 name="detectionFilter" type="string"></element>

 <element maxOccurs="1" minOccurs="0"

 name="signatureList" type="ITResource:SignatureList"></element>

 </sequence>

Page 36 of 63

 </extension>

 </complexContent>

</complexType>

Figure 34: MonitoringCondition

Figure 34 shows the model for the monitoring condition which in this case is a
MonitoringConfigurationConditions list in order to specify several monitoring conditions for an action,
where a MonitoringConfigurationCondition extends the FilteringConfigurationCondition in order
to be able specifying networking parameters, as well as adding generic monitoring-related parameters like a
detectionFilter and a signatureList.

<complexType name="MonitoringAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element maxOccurs="unbounded"

 name="monitoringActionType" type="ITResource:MonitoringActionType" />

 <element name="reportPerFlow" type="boolean" minOccurs="0" />

 <element name="reportPeriodicity" type="integer" minOccurs="0"/>

 <element maxOccurs="1" minOccurs="0" name="count"

 type="integer"></element>

 <element maxOccurs="1" minOccurs="0" name="ruleID"

 type="string"></element>

 <element name="aditionalRuleParameters"

 type="ITResource:KeyValue" minOccurs="0"

 maxOccurs="unbounded"></element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<simpleType name="MonitoringActionType">

 <restriction base="string">

 <enumeration value="ALERT"></enumeration>

 <enumeration value="ENABLE_SESS_STATS"></enumeration>

 <enumeration value="ENABLE_NO_SESS_STATS"></enumeration>

 </restriction>

</simpleType>

Figure 35: MonitoringAction

Regarding the monitoring action, Figure 35 shows the schema. As it can be seen, the MonitoringAction is
composed by a field which specifies the action type, this is, MonitoringActionType, indicating the nature of
the action, depending on the condition. The rest of the fields indicate the configuration of the action, this is,
it is possible to specify if it is required sending reports, its periodicity, if it is required count the packages, the
rule id and even a list of additional monitoring parameters.

5.3.2.7 Network Anonymity

MSPL network anonymity policy models are intended to specify network anonymity configurations allowing
to establish different preferences or properties depending on the kind of anonymization desired.

<complexType name="AnonymityConfigurationCondition">

 <complexContent>

 <extension base="ITResource:FilteringConfigurationCondition">

 </extension>

 </complexContent>

</complexType>

Figure 36: AnonymityConfigurationCondition

Page 37 of 63

The AnonymityConfigurationCondition inherits the FilteringConfigurationCondition in
order to provide network information regarding the subject as can be seen in Figure 36. Figure 37 shows the
AnonymityAction. It is composed by an AnonymityActionType, the anonymityTarget,
anonymityTechnologyParameters and aditionalAnonymityParameters. The first one represents
the kind of anonymity to be configured (sender, receiver or whole communication). The second one allows
to include the target network related information. The third one is able to represent specific technology
parameters, still independent to the implementation. Finally, the las one allows including additional
parameters as key-value pairs.

<complexType name="AnonymityAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element maxOccurs="unbounded" name="anonymityActionType"

 type="ITResource:AnonymityActionType" />

 <element maxOccurs="1" minOccurs="0" name="anonymityTarget"

 type="ITResource:AnonymityConfigurationCondition" />

 <element maxOccurs="1" minOccurs="0"

 name="anonymityTechnologyParameters"

 type="ITResource:AnonymityTechnologyParameter" />

 <element name="aditionalAnonymityParameters" type="ITResource:KeyValue"

 minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<simpleType name="AnonymityActionType">

 <restriction base="string">

 <enumeration value="SENDER"></enumeration>

 <enumeration value="RECEIVER"></enumeration>

 <enumeration value="COMMUNICATION"></enumeration>

 </restriction>

</simpleType>

Figure 37: AnonymityAction

The anonymityTechnologyParameters are extended being able to model different kind of anonymity
parameters depending on the anonymization technology like Onion routing or traffic mixing.

<complexType name="OnionRoutingTechnologyParameter">

 <complexContent>

 <extension base="ITResource:AnonymityTechnologyParameter">

 <sequence>

 <element name="exitRelay" type="boolean" />

 <element name="IPv6Exit" type="boolean" />

 <element name="publicRelay" type="boolean" />

 <element name="hiddenServiceDir" type="string" />

 <element name="hiddenServicePort" type="string" />

 <element name="relayBandwidthRate" type="integer" />

 <element name="relayBandwidthBurst" type="integer" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 38: OnionRoutingTechnologyParameter

Figure 38 shows a modelling example to represent Onion routing parameters.
OnionRoutingTechnologyParameter allows representing Onion routing related fields like the kind of
node in the Onion network, or even data rates.

Page 38 of 63

5.3.2.8 QoS

MSPL Quality of Service policy models are intended to specify QoS parameters in order to provide Quality of
Service configurations to the underlaying infrastructure.

<complexType name="QoSCondition">

 <sequence>

 <element name="profile" type="string" minOccurs="0" maxOccurs="1"/>

 <element name="throughput" type="integer" minOccurs="0" maxOccurs="1"/>

 <element name="transitDelay" type="integer" minOccurs="0" maxOccurs="1"/>

 <element name="priority" type="integer" minOccurs="0" maxOccurs="1"/>

 <element name="errorRate" type="integer" minOccurs="0" maxOccurs="1"/>

 <element name="resilence" type="integer" minOccurs="0" maxOccurs="1"/>

 </sequence>

</complexType>

Figure 39: QoSCondition

Figure 39 shows the fields which compounds a QoSCondition. In this way, the security administrator is
able to create and identify different QoS profiles by specifying QoS related fields like the throughput,
transitDelay, errorRate and so on.

<complexType name="QoSAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element maxOccurs="1" minOccurs="0"

 name="qosAction" type="ITResource:QoSCondition" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 40: QoSAction

Regarding the QoSAction, as it can be seen in Figure 40, basically it is modelled by using the QoSCondition
previously modelled in order to be able to introduce the QoS related fields.

5.3.2.9 Data Aggregation

MSPL data aggregation policy models are intended to specify data aggregation configurations in order to
configure security enablers capable to aggregate data based on specific patterns. Unlike other policies, in this
case there is not a simple condition but a set of DataAgreggationConfigurationConditions. Figure
41 shows that the filed is basically a list of DataAggregationConfigurationCondition which actually,
in order to represent network fields, inherits from the FilteringConfigurationCondition.

<complexType name="DataAgreggationConfigurationConditions">

 <complexContent>

 <extension base="ITResource:ConfigurationCondition">

 <sequence>

 <element maxOccurs="unbounded" minOccurs="1"

 name="dataAggregationConfigurationCondition"

 type="ITResource:DataAggregationConfigurationCondition"></element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="DataAggregationConfigurationCondition">

 <complexContent>

 <extension base="ITResource:FilteringConfigurationCondition">

Page 39 of 63

 </extension>

 </complexContent>

</complexType>

Figure 41: DataAggregationConfigurationCondition

Regarding the DataAggregationAction, Figure 42 show that the model is able to specify the action to be
addressed as well as a set of aditionalRuleParameters in order to provide additional data aggregation
parameters required by the organization. Note that it is easily extensible by adding new values to the
DataAggregationActionType,

<complexType name="DataAggregationAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element maxOccurs="unbounded" name="dataAggregationActionType"

 type="ITResource:DataAggregationActionType" />

 <element name="aditionalRuleParameters" type="ITResource:KeyValue"

 minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<simpleType name="DataAggregationActionType">

 <restriction base="string">

 <enumeration value="SIMPLE_AGGREGATION"></enumeration>

 </restriction>

</simpleType>

Figure 42: DataAggregationAction

5.3.2.10 Operational policies

Complementing the other security areas policies, the model provides a way to specify operational policies,
these are those capable to specify operational actions like concrete deployments or configurations.

<complexType name="EnableAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="EnableActionType"

 type="ITResource:EnableActionType" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="EnableActionType">

 <attribute name="enable" type="boolean"></attribute>

 <attribute name="objectToEnable" type="string"></attribute>

</complexType>

Figure 43: Operational Policy

Figure 43 shows the EnableAction definition which extends the ConfigurationAction base and it allows
indicating an EnableActionType where it is possible to specify if the action is enabling or disabling the policy
through a Boolean attribute, as well as the resource where the action will be performed. Extending this idea,
they have been modelled IoT specific security operational policies like IoT control policies and Virtual IoT
Honey Net policies.

Page 40 of 63

5.3.2.10.1 IoT control

To be able to model specific actions over the IoT domain devices, the policy model has been extended with
a new capability and different IoT actions. This kind of actions can provide different options in order to
interact with the IoT devices, e.g. the power management, the IoT security management, or even firmware
operations. Figure 44 shows an example of configuration rule action extension, in particular, the
PowerMgmtAction, which provides different action types like the ability of turn off or reset the IoT device.

<complexType name="PowerMgmtAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="PowerMgmtActionType"

type="ITResource:PowerMgmtActionType" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

<simpleType name="PowerMgmtActionType">

 <restriction base="string">

 <enumeration value="OFF"></enumeration>

 <enumeration value="RESET"></enumeration>

 </restriction>

</simpleType>

Figure 44: IoT control capability

5.3.2.10.2 Virtual IoT Honey Net

The virtual IoT Honey Net allows specifying a policy which will be able to model an IoT Virtual Honey Net
deployment by replicating a real physical one. This model relies on the “Technology Independent Honeynet
Description language” [3], that has been adapted and extended to cope with IoT scenarios, giving place to
the IoT-honeynet model. Figure 45 shows an example of the model which represents the policy. In this case,
the action has been extended as VIoTHoneyNetAction. That action intends to provide the specific action
type VIoTHoneyNetActionType that will be performed (e.g. DEPLOY, RESET or REMOVE) as well as the
ioTHoneyNet model in order to replicate the IoT physical environment.

<complexType name="VIoTHoneyNetAction">

 <complexContent>

 <extension base="ITResource:ConfigurationAction">

 <sequence>

 <element name="VIoTHoneyNetActionType"

 type="ITResource:VIoTHoneyNetActionType" />

 <element name="ioTHoneyNet" sm:type="ioTHoneyNet" />

 </sequence>

 </extension>

 </complexContent>

</complexType>

<simpleType name="VIoTHoneyNetActionType">

 <restriction base="string">

 <enumeration value="DEPLOY"></enumeration>

 <enumeration value="RESET"></enumeration>

 <enumeration value="REMOVE"></enumeration>

 </restriction>

</simpleType>

Figure 45: VIoT Honey Net

Regarding the iot-honeynet model, Figure 46 shows the main composition of the complex type, which is
compounded by a description of the honeynet and multiple net, router and gateway objects, and finally a
sequence of ioTHoneyPot.

Page 41 of 63

<xs:complexType name="ioTHoneyNetType">

 <xs:sequence>

 <xs:element type="xs:string" name="name"/>

 <xs:element name="net" type="tns:netType" maxOccurs="unbounded"

minOccurs="0"/>

 <xs:element name="router" type="tns:ioTRouterType" maxOccurs="unbounded"

minOccurs="0"/>

 <xs:element name="containmentGateway" type="tns:containmentGatewayType"

maxOccurs="unbounded" minOccurs="0"/>

 <xs:element name="ioTHoneyPot" type="tns:ioTHoneyPotType"

maxOccurs="unbounded" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

Figure 46: IoTHoneyNet Type

Figure 47 shows the definition for each element of the ioTHoneyNet, excluding the ioTHoneyPotType which
is illustrated later. The netType is modelled using the network name/description/address and an identifier.
For the routerType, we can specify the name, a sequence of interfaces and routes, even the operating
system and an identifier. The ifType in turn are composed by the name, mac address, IP address, an
identifier, and the network to which it belongs. On the other hand, the routeType allows defining the next
hop in order to reach a destination. Finally, we could define a gateway in similar way of the router
specification.

<xs:complexType name="netType">

 <xs:sequence>

 <xs:element type="xs:string" name="name"/>

 </xs:sequence>

 <xs:attribute type="xs:byte" name="id" use="optional"/>

</xs:complexType>

<xs:complexType name="routerType">

 <xs:sequence>

 <xs:element type="xs:string" name="name"/>

 <xs:element name="if" type="tns:ifType" maxOccurs="unbounded"

 minOccurs="1"/>

 <xs:element name="route" type="tns:routeType" maxOccurs="unbounded"

 minOccurs="0"/>

 <xs:element name="operatingSystem" type="tns:operatingSystemType"/>

 </xs:sequence>

 <xs:attribute type="xs:byte" name="id"/>

</xs:complexType>

<xs:complexType name="ifType">

 <xs:sequence>

 <xs:element type="xs:string" name="name"/>

 <xs:element type="xs:string" name="mac_addr"/>

 <xs:element type="xs:string" name="ip"/>

 </xs:sequence>

 <xs:attribute type="xs:byte" name="id"/>

 <xs:attribute type="xs:string" name="net"/>

 </xs:complexType>

 <xs:complexType name="routeType">

 <xs:sequence>

 <xs:element type="xs:string" name="dst"/>

 <xs:element type="xs:string" name="gw"/>

 </xs:sequence>

 <xs:attribute type="xs:byte" name="id"/>

 </xs:complexType>

 <xs:complexType name="containmentGatewayType">

Page 42 of 63

 <xs:sequence>

 <xs:element type="xs:string" name="name"/>

 <xs:element name="if" type="tns:ifType"/>

 <xs:element name="operatingSystem" type="tns:operatingSystemType"/>

 </xs:sequence>

 </xs:complexType>

Figure 47: ioT HoneyNet Type elements

Figure 48 shows the ioTHoneyPotType which extends the honeyPotType. It allows to specify similar values
as in the router case, including the operating system, interface and software specification of the honey pot
(e.g. Contiki with CoAP agent). Also, they have been provided relevant specific fields such as the model of the
IoT device, its physical location, and the sequence of available resources.

<xs:complexType name="honeyPotType">

 <xs:sequence>

 <xs:element type="xs:string" name="name"/>

 <xs:element type="tns:interactionLevel" name="interaction_level"/>

 <xs:element name="if" type="tns:ifType"/>

 <xs:element name="operatingSystem" type="tns:operatingSystemType"/>

 <xs:element name="software" type="tns:softwareType"/>

 </xs:sequence>

 <xs:attribute type="xs:byte" name="id"/>

</xs:complexType>

<xs:complexType name="ioTHoneyPotType">

 <xs:complexContent>

 <xs:extension base="tns:honeyPotType">

 <xs:sequence>

 <xs:element name="model" type="xs:string" minOccurs="0"/>

 <xs:element name="location" type="tns:physicalLocation" minOccurs="0"/>

 <xs:element name="resource" type="tns:ioTResourceType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Figure 48: HoneyPot type

The model of the IoT device corresponds with the name of the specific hardware model (e.g. “WISMOTE”).
The physical location allows specifying the location in 3D coordinates (x,y,z) and finally, the resources can be
selected from a specific list of the most common IoT resources (e.g. TEMPERATURE, HUMIDITY...).

5.3.2.11 Policy for Orchestration

Policies for orchestration are intended to provide a set of security policies which must be enforced according
on the orchestration logic. This is, following a specific order according on the priority, dependences or a
combination of these.

<complexType name="ITResourcesType">

 <sequence>

 <element maxOccurs="unbounded" minOccurs="1" name="ITResource"

 type="ITResource:ITResourceType"></element>

 </sequence>

</complexType>

<complexType name="ITResourceType">

 <sequence>

 <element maxOccurs="1" minOccurs="1" name="configuration"

 type="ITResource:Configuration"/>

 <element maxOccurs="1" minOccurs="0" name="priority"

Page 43 of 63

 type="integer"/>

 <element maxOccurs="1" minOccurs="0"

 name="dependences" type="ITResource:Dependences"/>

 <element maxOccurs="1" minOccurs="0"

 name="enablerCandidates" type="ITResource:EnablerCandidates"/>

 </sequence>

 <attribute name="ID" type="string"/>

</complexType>

Figure 49: ITResourcesType

Figure 49 shows the ITResourcesType which represents a set of security policies which depends on other
security policies or events. In this way, the ITResourcesType are composed by a list of ITResource, and the
latter has been extended with new fields in order to establish a priority, dependence and

enablerCandidates. The priority is used to decide the importance of the policy for the policy enforcement,
while the dependence field is able to represent several dependences which refer to another security policy
or some event (e.g. authentication event). Finally, the enabler candidates represent what could be candidate
security enablers abler to enforce the security policy.

5.4 POLICY EDITOR TOOL

In order to ease the policy modelling, it is provided a Policy Editor tool. By using the Policy Editor Tool, it is
possible modelling High-level security policies through a friendly GUI, as well as request the policy translation
or even the policy enforcement.

Figure 50: Policy Editor Tool – Refinement

Figure 50 shows the GUI of the Policy Editor Tool for the policy enforcement. Currently the editor provides
two main sections. The first one allows the security administrator to indicate the action, object and subject
of the security policy. The second one includes the target, purpose and resource, so, by using this GUI the
security administrator is able to specify the required fields to modelling an HSPL policies, taking into account
that each selector is filled depending on the rest, according on Table 1 and Table 2. For instance, the available
objects are different if the action is related with authorization or with an operational policy. Once the system
administrator has defined the High-level security policy, he/she can request the policy refinement by pressing
the refinement button.

Page 44 of 63

Figure 51: Policy Editor Tool - Enforce request

Figure 51 shows an example of result for the policy refinement. In this case the policy refinement screen
provides both, the High-level security policy generated from the specified fields, as well as the Medium-level
security policy (or policies) refined from the first one. At this point the security administrator verifies the
result and decides if it is necessary to perform some kind of modification over the policy or it can be requested
for the enforcement. If the security administrator decides to modify the policy, he/she can click on the modify
button, getting back to the HSPL definition. On the other hand, if the enforce request button is pressed, a
Medium-level policy enforcement is requested.

5.5 POLICY CONFLICTS DETECTION

The American Heritage Dictionary of the English Language defines a conflict as “A part of discord caused by
the actual or perceived opposition of needs, values and interests...”. Applying that definition in the scope of
this document, a policy conflict occurs when exists some kind of incompatibility or contradiction in the policy
definitions taking into account the capabilities, conditions and actions. In order to detect these conflicts, it is
applied a rule-based approach through up the system workflow since this kind of approach allows modelling
the behaviour of the system by declaring rules, providing important properties like flexibility and scalability.

Figure 52 shows a base diagram for the rule engine. A security policy (or a set of them) is sent to the rule
engine in order to detect some kind of conflict. Then, the rule engine verifies the security policy/es against
the defined rules. To this aim it is possible it requires performing requests to different data sources in order
to know the current status of the affected policies, as well as adapting the policy model to the rule engine if
it is necessary.

Page 45 of 63

Figure 52: Rule Engine

Regarding the rules, Figure 53 shows an example of rule declaration in an abstract language. As it can be
seen, there are two well-differentiated sections separated by “->”, these are, the antecedents and the
consequent. The antecedents allow specify different conditions through Boolean expressions.

 ConflictType: Antecedent1 ^ Antecedent2 | AntecedentN

 ->

 Consequent

Figure 53: Rule syntax example

In practice, each Antecedent expression can reference different elements like objects, attributes, properties,
classes or methods. In this way, if the antecedent’s expression is satisfied, it will be executed the consequent.
Usually, this consequent applies some kind of action over the system. The kind of antecedents and
consequents is determined depending on the conflict we intend to detect. Since the kind of conflict can be
different depending on the circumstances, in the scope of ANASTACIA project security policies they have
been identified mainly the following ones; redundancy, priority, duties, and dependence.

5.5.1 Redundancy conflict

This kind of conflict can be identified when the same security policy is tried to be enforced multiple times, or
when the security policy behaviour is already defined by a more restrictive one (e.g. we already have filtered
all traffic, and we try filter CoAP traffic).

 Policy: p

 RedundancyConflict: (p.exists() ^ p.enforced()) |

 (p.exists() ^ p.status(“pending”)) |

 (p.existByBehavior())

 ->

 notify(RedundancyConflict,p)

Figure 54: Redundancy conflict rule example

Figure 54 shows an example of the rules which can be verified in order to detect redundancy conflicts. In the
example we will detect a redundancy if the same policy already exists (the same object or ID) and it is already
enforced, or if the policy exists and is pending to be enforced, or if the policy content already exists. This
latter means, if there is another policy which is enforcing the same behaviour. It is important to highlight
that, while the example is just notifying the conflict, other kind of consequents could be performed. E.g. in

Page 46 of 63

the latter case we could be interested in register the redundant policy in a queue in order to be executed if
the policy with the same behaviour is removed.

5.5.2 Conflict of priorities

This conflict is related with a policy for orchestration and it arises when a security policy is trying to be
enforced before another one with a higher priority.

 Policy: p

 OrchestrationPolicySet: ops

 PriorityConflict: op in ops ^ op.priority > p.priority ^ !op.enforced()

 ->

 notify(PriorityConflict,p)

Figure 55: Priority conflict rule example

Figure 55 shows an example where it is being verified if exists a security policy in the policy for orchestration
with a higher priority, and it is still unenforced. In this case it is necessary to notify the priority conflict
violation.

5.5.3 Conflict of duties

This kind of conflicts occurs when a security policy generates a new behaviour in the system which is not
compatible with the requirements of another security policy. E.g. A channel protection security policy will
generate a conflict with a deep packet inspection security policy.

 Policy: p

 Policies: ps

 DutiesConflict: if p.fieldRelated(pd.fields) ^ p.capability.colision(ps)

 ->

 notify(DutiesConflict,p)

Figure 56: Duties conflict rule example

Figure 56 shows a rule example for the conflict of duties. In this case, it is verified if the security policy affects
in somehow to the other policies already deployed on the system. This is, it verifies if some field is related
with an already enforced security policy (e.g. an IP address which is contained in a subnet which already
enforces some kind of policy). If so, it is then verified if the capability collisions with the capabilities of the
affected policies. Of course, this requires establishing a capability collision base (e.g. DTLS_protocol will
collide with Traffic_inspection_L7).

5.5.4 Conflict of dependence

This kind of conflict arises when the security policy enforcement depends on other security policy or event
and the latter is already not enforced/satisfied.

 Policy: p

 Policies: ps

 Events: es

 DependenceConflict: p2 in ps ^ p.depends(p2) ^ !p2.enforced() |

 e in es ^ p.depends(e) ^ !e.triggered()

 ->

 notify(DependenceConflict,p)

Page 47 of 63

Figure 57: Dependence conflict rule example

Figure 57 specifies that if there is a security policy which depends on another one which is currently not
enforced, or it depends on an event which has not been previously triggered, a dependence conflict will be
notified.

5.5.5 Conflict of managers

The conflict of managers occurs when a security policy which contradicts a previous one is trying to be
enforced.

 Policy: p

 Policies: ps

 DutiesConflict: ps.conditionsExists(p.condition) ^ p.action.colision(ps.action) |

 ps.conditionContains(p.condition) ^ p.action.colision(ps.action)

 ->

 notify(ManagersConflict,p)

Figure 58: Managers conflict rule example

Figure 58 shows an example where it is being verifying if the condition already exists as part of another
security policy and the actions collide among them, as well as if the condition is not the same but is contained
in somehow in other security policy (i.e. An IP address inside a subnet address). In this case it is also required
a well-known base of action collisions.

Page 48 of 63

6 USE CASE: SECURITY POLICY ENFORCEMENT IN IOT BUILDING

SCENARIOS
This section shows specific instantiations of security policies in order to provide authentication and
authorization security properties to the IoT infrastructure in a building management scenario where
ANASTACIA has been deployed.

6.1 AUTHENTICATION

In order to configure the authentication process, the security administrator is able to model an
authentication High-level Security Orchestration Policy through the Policy Editor Tool. Annex 1 shows an
authentication orchestration HSPL policy. This policy includes several HSPL policies in order to configure the
authentication mechanism for the IoT devices. This is, the IoT-devices will be configured in order to perform
the authentication using PANA protocol against a PANA_AGENT. Actually, it is also specifying the preferred
method for the authentication agent. Depending on the policy interpreter implementation, some HSPL policy
values can indicate that the HSPL can be refined in one or multiple MSPL policies. For instance, a bidirectional
HSPL policy can be refined in two MSPL policies, as well as a subject with identifies multiple devices (e.g. IoT-
Net) could be refined in multiple MSPL policies.

Figure 59: HSPL to MSPL orchestration example

Figure 59 shows an example where the security administrator defines an authentication orchestration HSPL
policy which contains multiple HSPL policies, and it is refined in a MSPL orchestration policy that contains
multiple MSPL policies. In this case, the high-level orchestration authentication policy involves enough
security policies in order to allow the full authentication process.

Figure 60: AuthN Orchestration graph

Figure 60 shows an orchestration MSPL graph. This kind of graph determines the order and dependencies
among the security policies. In this case, in order to configure the authentication in the IoT device, the IoT

Page 49 of 63

controller must be able to send the command and control message to the IoT device, so the first MSPL policy
is a networking authorization from the IoT Controller to the IoT device. Once the first policy has been
enforced correctly, the authentication configuration can be enforced against the IoT-device through the IoT
Controller. When the authentication is properly configured, the authentication traffic is allowed
bidirectionally regardless of the order. Annex 2 shows a full example of an authentication orchestration MSPL
policy.

6.2 AUTHORIZATION

Before the IoT devices are able to access someplace in the architecture in order to put some kind of
information, it must be performed an authorization process. Annex 3 shows an instantiation of a High-level
security policy where the security administrator requires that the IoT device (subject) is authorised (action)
to put (purpose) temperature (resource) measures in the IoT Broker (target). In the same way of the previous
case, the HSPL policies could be refined in one or multiple MSPL depending on the organization.

Figure 61: AuthZ HSPL to MSPL Orchestration example

Figure 61 shows that in this case the HSPL authorization orchestration policy generates four MSPL security
policies. The first one defines the resource authorization, the second and third ones are intended to allow
the bidirectional communication for the authorization process (they can be generated from one HSPL).
Finally, the fourth one allows the unidirectional traffic from the IoT device to the IoT broker.

Figure 62: AuthZ Orchestration graph

Figure 62 shows the orchestration graph generated by the high-level authorization orchestration policy. In
this case, the first policy to be applied is the authorization resource itself, which is focused on grant enough
permissions to the IoT device in order to write the specified resource in the IoT Broker. Once this policy has
been enforced, the authorization traffic must be allowed in order the IoT device is able to perform the
authorization process. When the authorization process has been finished successfully the system will receive
an authorization success notification. Since the last policy depends on the authorization success event, when

Page 50 of 63

the notification is received, the dependence is satisfied so the network authorization policy is enforced in
order to allow the communication from the IoT device against the IoT broker. This is, the traffic from the IoT
device to the IoT Broker is not allowed until the authorization has been performed successfully. Annex 4
shows a full example of an authentication orchestration MSPL policy.

Page 51 of 63

7 CONCLUSIONS
This document has detailed the main security policy models to define the policies envisaged in the
ANASTACIA framework. To accomplish this aim, the present document exposes how the two-level policy
approach and the capability concept have been included and evolved in order to apply them over the
ANASTACIA framework. Thus, the models and processes have been extended in order to cope with the main
identified security policies for the main scenarios being addressed in ANASTACIA project.

The document has also provided real policy examples for an IoT building management system, focused on
the policy orchestration in order to provide a whole authentication and authorization process. In this regard,
they have been instantiated different security policies in order to perform resource and network
authorization and subject authentication, taking into account the policy dependences.

It should be noticed that this deliverable has provided the foundations for the policy modelling. Nonetheless,
this design might be extended and evolved as the project evolves.

Page 52 of 63

8 ANNEX

<?xml version="1.0" encoding="UTF-8"?>

<tns:Mapping xmlns:tns="http://www.example.org/Refinement_Schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/Refinement_Schema hspl.xsd ">

 <tns:hspl_list xsi:type="tns:HSPL_Orchestration"

ID="hsplo_a87cda98d7ca9d8787cdaa">

 <!-- Allow IoT Controller to IoT device Traffic -->

 <tns:hspl id="hspl_a87cda98d7ca9d8787cdca" subject="IoTController">

 <tns:action>authorise_access</tns:action>

 <tns:objectH>CoAP_traffic</tns:objectH>

 <tns:fields>

 <tns:traffic_target>

 <tns:target_name>Sensor1</tns:target_name>

 </tns:traffic_target>

 </tns:fields>

 </tns:hspl>

 <!-- Configure authN in Sensor1 against PANA AGENT -->

 <tns:hspl id="hspl_a87cda98d7ca9d8787cdcb" subject="Sensor1">

 <tns:action>config_authentication</tns:action>

 <tns:objectH>PANA</tns:objectH>

 <tns:fields>

 <tns:traffic_target>

 <tns:target_name>PANA_AGENT</tns:target_name>

 </tns:traffic_target>

 </tns:fields>

 <tns:dependences>

 <tns:dependence xsi:type="tns:PolicyDependence">

 <tns:dependenceCondition xsi:type="tns:PolicyDependenceCondition">

 <tns:policyID>hspl_a87cda98d7ca9d8787cdca</tns:policyID>

 <tns:status>ENFORCED</tns:status>

 </tns:dependenceCondition>

 </tns:dependence>

 </tns:dependences>

 </tns:hspl>

 <!-- Allow authN traffic -->

 <tns:hspl id="hspl_a87cda98d7ca9d8787cdcd" subject="Sensor1"

 bidirectional="true">

 <tns:action>authorise_access</tns:action>

 <tns:objectH>PANA_traffic</tns:objectH>

 <tns:fields>

 <tns:traffic_target>

 <tns:target_name>PANA_AGENT</tns:target_name>

 </tns:traffic_target>

 </tns:fields>

 <tns:dependences>

 <tns:dependence xsi:type="tns:PolicyDependence">

 <tns:dependenceCondition xsi:type="tns:PolicyDependenceCondition">

 <tns:policyID>hspl_a87cda98d7ca9d8787cdcb</tns:policyID>

 <tns:status>ENFORCED</tns:status>

 </tns:dependenceCondition>

 </tns:dependence>

 <tns:dependence xsi:type="tns:PolicyDependence">

 <tns:dependenceCondition xsi:type="tns:PolicyDependenceCondition">

 <tns:policyID>hspl_a87cda98d7ca9d8787cdcc</tns:policyID>

 <tns:status>ENFORCED</tns:status>

 </tns:dependenceCondition>

 </tns:dependence>

Page 53 of 63

 </tns:dependences>

 </tns:hspl>

 </tns:hspl_list>

</tns:Mapping>

Annex 1: AuthN Orchestration HSPL

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>

<ITResourceOrchestration ID="mspl_9f1a88b4fc67421b98de270d5a63d35f"

 xmlns="http://modeliosoft/xsddesigner/a22bd60b-ee3d-425c-8618-

beb6a854051a/ITResource.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://modeliosoft/xsddesigner/a22bd60b-ee3d-425c-

8618-beb6a854051a/ITResource.xsd ANASTACIA_MSPL_XML_Schema.xsd">

 <!-- Allow traffic from IoT Controller to Sensor -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35a">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>Traffic_Divert</Name>

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='TrafficDivertAction' >

 <TrafficDivertActionType>FORWARD</TrafficDivertActionType>

 <packetDivertAction>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <DestinationAddress>

 2001:0720:1710:0004::5001/128

 </DestinationAddress>

 </packetFilterCondition>

 </packetDivertAction>

 </configurationRuleAction>

 <configurationCondition

 xsi:type='TrafficDivertConfigurationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:720:1710:4:5054:ff:feec:e209/128

 </SourceAddress>

 <DestinationAddress>

 2001:0720:1710:0004:0000:0000:0000:5001/128

 </DestinationAddress>

 </packetFilterCondition>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>60000</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

 <Name>Conf0</Name>

 </configuration>

 </ITResource>

 <!-- AuthN Configuration -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35b">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>Authentication</Name>

 </capability>

 <configurationRule>

Page 54 of 63

 <configurationRuleAction xsi:type='AuthenticationAction' >

 <AuthenticationOption>

 <AuthenticationTarget>

 <DestinationAddress>

 2001:720:1710:4:5054:caff:fefe:770f/128

 </DestinationAddress>

 <DestinationPort>5678</DestinationPort>

 <ProtocolType>UDP</ProtocolType>

 </AuthenticationTarget>

 <AuthenticationMethod>PSK</AuthenticationMethod>

 <AuthenticationMechanism>PANA</AuthenticationMechanism>

 <AuthenticationParameters></AuthenticationParameters>

 </AuthenticationOption>

 </configurationRuleAction>

 <configurationCondition xsi:type='AuthenticationCondition' >

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:0720:1710:0004::5001/128

 </SourceAddress>

 </packetFilterCondition>

 <AuthenticationSubject>67a8c95d9f8c</AuthenticationSubject>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>0</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

 <Name>Conf0</Name>

 </configuration>

 <dependences>

 <dependence xsi:type='PolicyDependence'>

 <configurationCondition>

 <isCNF>true</isCNF>

 <policyID>mspl_9f1a88b4fc67421b98de270d5a63d35a</policyID>

 <status>ENFORCED</status>

 </configurationCondition>

 </dependence>

 </dependences>

</ITResource>

<!-- Allow authN Traffic from IoT -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35c">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>Traffic_Divert</Name>

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='TrafficDivertAction' >

 <TrafficDivertActionType>FORWARD</TrafficDivertActionType>

 <packetDivertAction>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <DestinationAddress>

 2001:720:1710:4:5054:caff:fefe:770f/128

 </DestinationAddress>

 </packetFilterCondition>

 </packetDivertAction>

 </configurationRuleAction>

 <configurationCondition

 xsi:type='TrafficDivertConfigurationCondition'>

Page 55 of 63

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:0720:1710:0004::5001/128

 </SourceAddress>

 <DestinationAddress>

 2001:720:1710:4:5054:caff:fefe:770f/128

 </DestinationAddress>

 <DestinationPort>5678</DestinationPort>

 <ProtocolType>UDP</ProtocolType>

 </packetFilterCondition>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>60000</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

 <Name>Conf0</Name>

 </configuration>

 <dependences>

 <dependence xsi:type='PolicyDependence'>

 <configurationCondition>

 <isCNF>true</isCNF>

 <policyID>mspl_9f1a88b4fc67421b98de270d5a63d35b</policyID>

 <status>ENFORCED</status>

 </configurationCondition>

 </dependence>

 </dependences>

 </ITResource>

 <!-- Allow authN Traffic to IoT -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35d">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>Traffic_Divert</Name>

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='TrafficDivertAction' >

 <TrafficDivertActionType>FORWARD</TrafficDivertActionType>

 <packetDivertAction>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <DestinationAddress>

 2001:0720:1710:0004:0000:0000:0000:5001/128

 </DestinationAddress>

 </packetFilterCondition>

 </packetDivertAction>

 </configurationRuleAction>

 <configurationCondition

 xsi:type='TrafficDivertConfigurationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:720:1710:4:5054:caff:fefe:770f/128

 </SourceAddress>

 <DestinationAddress>

 2001:0720:1710:0004::5001/128

 </DestinationAddress>

 <SourcePort>5678</SourcePort>

 <ProtocolType>UDP</ProtocolType>

 </packetFilterCondition>

Page 56 of 63

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>60000</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

 <Name>Conf0</Name>

 </configuration>

 <dependences>

 <dependence xsi:type='PolicyDependence'>

 <configurationCondition>

 <isCNF>true</isCNF>

 <policyID>mspl_9f1a88b4fc67421b98de270d5a63d35b</policyID>

 <status>ENFORCED</status>

 </configurationCondition>

 </dependence>

 </dependences>

 </ITResource>

</ITResourceOrchestration>

Annex 2: AuthZ Orchestration MSPL

<?xml version="1.0" encoding="UTF-8"?>

<tns:Mapping xmlns:tns="http://www.example.org/Refinement_Schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/Refinement_Schema hspl.xsd ">

 <tns:hspl_list xsi:type="tns:HSPL_Orchestration"

ID="hsplo_a87cda98d7ca9d8787cdaa">

 <!-- Authorize Sensor1 to put resource in IoT Broker -->

 <tns:hspl id="hspl_a87cda98d7ca9d8787cdca" subject="Sensor1">

 <tns:action>authorise_access</tns:action>

 <tns:objectH>resource</tns:objectH>

 <tns:fields>

 <tns:traffic_target>

 <tns:target_name>IoT_Broker</tns:target_name>

 </tns:traffic_target>

 <tns:purpose>

 <tns:purpose_property>

 <tns:key>method</tns:key>

 <tns:value>PUT</tns:value>

 </tns:purpose_property>

 </tns:purpose>

 <tns:resource>

 <tns:resource_property>

 <tns:key>TEMPERATURE</tns:key>

 </tns:resource_property>

 </tns:resource>

 </tns:fields>

 </tns:hspl>

 <!-- Allow authorization traffic (sensor to paa) -->

 <tns:hspl id="hspl_a87cda98d7ca9d8787cdcb" subject="Sensor1"

 bidirectional="true">

 <tns:action>authorise_access</tns:action>

 <tns:objectH>PANA_traffic</tns:objectH>

 <tns:fields>

 <tns:traffic_target>

 <tns:target_name>PANA_AGENT</tns:target_name>

 </tns:traffic_target>

 </tns:fields>

Page 57 of 63

 <tns:dependences>

 <tns:dependence xsi:type="tns:PolicyDependence">

 <tns:dependenceCondition xsi:type="tns:PolicyDependenceCondition">

 <tns:policyID>hspl_a87cda98d7ca9d8787cdca</tns:policyID>

 <tns:status>ENFORCED</tns:status>

 </tns:dependenceCondition>

 </tns:dependence>

 </tns:dependences>

 </tns:hspl>

 <!-- Allow IoT device Traffic to Resource target -->

 <tns:hspl id="hspl_a87cda98d7ca9d8787cdce" subject="Sensor1">

 <tns:action>authorise_access</tns:action>

 <tns:objectH>CoAP_traffic</tns:objectH>

 <tns:fields>

 <tns:traffic_target>

 <tns:target_name>IoT_Broker</tns:target_name>

 </tns:traffic_target>

 </tns:fields>

 <tns:dependences>

 <tns:dependence xsi:type="tns:EventDependence">

 <tns:eventID>AUTHZ-SUCCESS</tns:eventID>

 <tns:dependenceCondition xsi:type="tns:EventDependenceCondition">

 <tns:subject>Sensor1</tns:subject>

 <tns:fields>

 <tns:traffic_target>

 <tns:target_name>IoT_Broker</tns:target_name>

 </tns:traffic_target>

 <tns:purpose>

 <tns:purpose_property>

 <tns:key>method</tns:key>

 <tns:value>PUT</tns:value>

 </tns:purpose_property>

 </tns:purpose>

 <tns:resource>

 <tns:resource_property>

 <tns:key>TEMPERATURE</tns:key>

 </tns:resource_property>

 </tns:resource>

 </tns:fields>

 </tns:dependenceCondition>

 </tns:dependence>

 </tns:dependences>

 </tns:hspl>

 </tns:hspl_list>

</tns:Mapping>

Annex 3: AuthZ Orchestration HSPL

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>

<ITResourceOrchestration ID="mspl_9f1a88b4fc67421b98de270d5a63d35f"

 xmlns="http://modeliosoft/xsddesigner/a22bd60b-ee3d-425c-8618-

beb6a854051a/ITResource.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://modeliosoft/xsddesigner/a22bd60b-ee3d-425c-

8618-beb6a854051a/ITResource.xsd ANASTACIA_MSPL_XML_Schema.xsd">

 <!-- Resource authorisation -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35a">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>AuthoriseAccess_resurce</Name>

Page 58 of 63

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='AuthorizationAction' >

 <AuthorizationActionType>ALLOW</AuthorizationActionType>

 </configurationRuleAction>

 <configurationCondition xsi:type='AuthorizationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:0720:1710:0004::5001/128

 </SourceAddress>

 <DestinationAddress>IoT Broker IP</DestinationAddress>

 </packetFilterCondition>

 <timeCondition>

 <Weekday></Weekday>

 <Time>08:00-19:00,</Time>

 </timeCondition>

 <applicationLayerCondition

 xsi:type="IoTApplicationLayerCondition">

 <URL>/60001</URL>

 <method>PUT</method>

 </applicationLayerCondition>

 <AuthorizationSubject>Wola</AuthorizationSubject>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>0</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

 <resolutionStrategy xsi:type='FMR'/>

 <Name>MSPL_b22c6384-ed08-487b-a3ca-ce2e557ca434</Name>

 </configuration>

</ITResource>

 <!-- Allow authZ Traffic from IoT -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35c">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>Traffic_Divert</Name>

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='TrafficDivertAction' >

 <TrafficDivertActionType>FORWARD</TrafficDivertActionType>

 <packetDivertAction>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <DestinationAddress>

 2001:720:1710:4:5054:caff:fefe:770f/128

 </DestinationAddress>

 </packetFilterCondition>

 </packetDivertAction>

 </configurationRuleAction>

 <configurationCondition

 xsi:type='TrafficDivertConfigurationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:0720:1710:0004::5001/128

 </SourceAddress>

 <DestinationAddress>

 2001:720:1710:4:5054:caff:fefe:770f/128

Page 59 of 63

 </DestinationAddress>

 <DestinationPort>5678</DestinationPort>

 <ProtocolType>UDP</ProtocolType>

 </packetFilterCondition>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>60000</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

 <Name>Conf0</Name>

 </configuration>

 <dependences>

 <dependence xsi:type='PolicyDependence'>

 <configurationCondition>

 <isCNF>true</isCNF>

 <policyID>mspl_9f1a88b4fc67421b98de270d5a63d35b</policyID>

 <status>ENFORCED</status>

 </configurationCondition>

 </dependence>

 </dependences>

 </ITResource>

 <!-- Allow authZ Traffic to IoT -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35d">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>Traffic_Divert</Name>

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='TrafficDivertAction' >

 <TrafficDivertActionType>FORWARD</TrafficDivertActionType>

 <packetDivertAction>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <DestinationAddress>

 2001:0720:1710:0004::5001/128

 </DestinationAddress>

 </packetFilterCondition>

 </packetDivertAction>

 </configurationRuleAction>

 <configurationCondition

 xsi:type='TrafficDivertConfigurationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:720:1710:4:5054:caff:fefe:770f/128

 </SourceAddress>

 <DestinationAddress>

 2001:0720:1710:0004::5001/128

 </DestinationAddress>

 <SourcePort>5678</SourcePort>

 <ProtocolType>UDP</ProtocolType>

 </packetFilterCondition>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>60000</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

Page 60 of 63

 <Name>Conf0</Name>

 </configuration>

 <dependences>

 <dependence xsi:type='PolicyDependence'>

 <configurationCondition>

 <isCNF>true</isCNF>

 <policyID>mspl_9f1a88b4fc67421b98de270d5a63d35b</policyID>

 <status>ENFORCED</status>

 </configurationCondition>

 </dependence>

 </dependences>

 </ITResource>

 <!-- Allow Traffic from IoT Controller to IoT Broker -->

 <ITResource ID="mspl_9f1a88b4fc67421b98de270d5a63d35a">

 <configuration xsi:type='RuleSetConfiguration'>

 <capability>

 <Name>Traffic_Divert</Name>

 </capability>

 <configurationRule>

 <configurationRuleAction xsi:type='TrafficDivertAction' >

 <TrafficDivertActionType>FORWARD</TrafficDivertActionType>

 <packetDivertAction>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <DestinationAddress>

 2001:0720:1710:0004:0000:0000:0000:5001/128

 </DestinationAddress>

 </packetFilterCondition>

 </packetDivertAction>

 </configurationRuleAction>

 <configurationCondition

 xsi:type='TrafficDivertConfigurationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:720:1710:4:5054:ff:feec:abcd/128

 </SourceAddress>

 <DestinationAddress>

 2001:0720:1710:0004::5001/128

 </DestinationAddress>

 </packetFilterCondition>

 </configurationCondition>

 <externalData xsi:type='Priority'>

 <value>60000</value>

 </externalData>

 <Name>Rule0</Name>

 <isCNF>false</isCNF>

 </configurationRule>

 <Name>Conf0</Name>

 </configuration>

 <dependences>

 <dependence xsi:type='EventDependence'>

 <eventID>AUTHZ-SUCCESS</eventID>

 <configurationCondition xsi:type='FilteringConfigurationCondition'>

 <isCNF>false</isCNF>

 <packetFilterCondition>

 <SourceAddress>

 2001:0720:1710:0004:0000:0000:0000:5001/128

 </SourceAddress>

 </packetFilterCondition>

 </configurationCondition>

Page 61 of 63

 </dependence>

 </dependences>

 </ITResource>

</ITResourceOrchestration>

Annex 4: AuthZ Orchestration MSPL

Page 62 of 63

9 REFERENCES

[1] Common Information Model (CIM), DMTF Standard.

[2] Jorge Bernal Bernabe, Juan M. Marin Perez, Jose M. Alcaraz Calero, Jesus D. Jimenez Re, Felix J.

Garcia Clemente, Gregorio Martinez Perez, Antonio F. Gomez Skarmeta, “Security Policy

Specification”, Network and Traffic Engineering in Emerging Distributed Computing Applications,

IGI Global, pp. 66-93, 2012.

[3] Policy-Based Security Tools and Framework (POSITIF), EU project, FP6, IST-2002-002314

[4] Dependable Security by Enhanced Reconfigurability (DESEREC), IST-2004-026600, EU project,

Framework Programme 6.

[5] SECURED EU FP7 project, deliverable D4.1: Policy specification.

[6] SECURED EU FP7 project, deliverable D4.2: Policy transformation and optimization techniques.

[7] SECURED EU FP7 project, https://www.secured-fp7.eu/

[8] https://www.w3.org/TR/2007/REC-ws-policy-20070904/ws-policy-framework.pdf

[9] Twidle, K., Dulay, N., Lupu, E., & Sloman, M. (2009). Ponder2: A Policy System for Autonomous

Pervasive Environments. 2009 Fifth International Conference on Autonomic and Autonomous

Systems. doi:10.1109/icas.2009.42

[10] HoneyNet description language: W. Fan, D. Fernández and V. A. Villagrá, "Technology independent

honeynet description language," 2015 3rd International Conference on Model-Driven Engineering

and Software Development (MODELSWARD), Angers, 2015, pp. 303-311.

[11] Diego Lopez et al. I2NSF Framework: Capabilities, interfaces and framework. Internet-Draft, IETF.

May 2017. I2NSF Working Group. https://tools.ietf.org/html/rfc8329

[12] Basile et al. Model of Security Capabilities for Network Security Functions. Internet-Draft , IETF.

January 2017. https://tools.ietf.org/html/draft-ietf-i2nsf-capability-04

[13] Giotis, K., Kryftis, Y., & Maglaris, V. (2015). Policy-based orchestration of NFV services in Software-

Defined Networks. Proceedings of the 2015 1st IEEE Conference on Network Softwarization

(NetSoft). doi:10.1109/netsoft.2015.7116145

[14] Li, X., & Qian, C. (2016). An NFV Orchestration Framework for Interference-Free Policy Enforcement.

2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS).

doi:10.1109/icdcs.2016.24

[15] Zhou, Y. C., Liu, X. P., Kahan, E., Wang, X. N., Xue, L., & Zhou, K. X. (2007). Context Aware Service

Policy Orchestration. IEEE International Conference on Web Services (ICWS 2007).

doi:10.1109/icws.2007.66

https://www.secured-fp7.eu/
https://www.w3.org/TR/2007/REC-ws-policy-20070904/ws-policy-framework.pdf
https://tools.ietf.org/html/draft-ietf-i2nsf-capability-04

Page 63 of 63

[16] Alcaraz Calero, J. M., Marín Pérez, J. M., Bernal Bernabé, J., Garcia Clemente, F. J., Martínez Pérez,

G., & Gómez Skarmeta, A. F. (2010). Detection of semantic conflicts in ontology and rule-based

information systems. Data & Knowledge Engineering, 69(11), 1117–1137.

doi:10.1016/j.datak.2010.07.004

[17] Bernabe, J. B., Perez, G. M., & Skarmeta Gomez, A. F. (2015). Intercloud Trust and Security Decision

Support System: an Ontology-based Approach. Journal of Grid Computing, 13(3), 425–456.

doi:10.1007/s10723-015-9346-7

[18] Y. Sun, T. Wu, G. Zhao and M. Guizani, "Efficient Rule Engine for Smart Building Systems," in IEEE

Transactions on Computers, vol. 64, no. 6, pp. 1658-1669, 1 June 2015. doi:

10.1109/TC.2014.2345385.

