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PUBLIC SUMMARY 
This document represents the final deliverable of the task 4.1 – Monitoring Enablers. It contains description 
about the changes introduced in the ANASTACIA Monitoring Module during the second phase of the project, 
both at architectural level and at components level. 

First, the Montimage Monitoring Tool (MMT) was further extended to detect SlowDoS attacks. These attacks 
try to exhaust the connection resources of the server victim and reaches the Denial of Service condition by 
not allowing any new clients to open new connections to the server. Protocols based on requests and 
responses (such as HTTP and FTP) might be vulnerable to such attacks, being its detection a non-trivial task, 
due to the inability to reconstruct whole requests or responses in order to analyse them. The MMT software 
tackled this problem by implementing an EFSM-based detection rule that measures the partial times taken 
to transfer the data (request or response) between the client and the server. 

Secondly, the Data Analysis component has also be extended to actively monitor the measured data from 
IoT sensors. This is achieved by learning a constraint-based decision model in three main stages: (1) building 
a first model; (2) learning the best model, and (3) verifying the model. These stages are supported by 
constraint-based programming in order to select the best set of features that allow effectively detecting the 
desired attack. 

Finally, a novel component was introduced in the general design of the monitoring module: The Resource 
and QoS Monitoring component. This component has been introduced to provide the Security Orchestrator 
the ability to directly monitor the amount of resources being used. This is done with the aim of allowing the 
Security Orchestrator to correctly enforce QoS policies on the monitored platform. 

All the aforementioned modifications along with this new member of the monitoring module, allows the 
ANASTACIA Monitoring Module to extend the support for novel attacks and scenarios during the second 
phase of the project. 
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1 INTRODUCTION 

1.1 AIMS OF THE DOCUMENT 
This document updates the previous D4.1 with the new advancement on the monitoring components that 
will be implemented for the ANASTACIA platform. Section 2 presents the principal developments organized 
in the following manner: Section 2.2 presents the general design of the Monitoring Module in the general 
ANASTACIA architecture, Section 2.2.1 presents the adaptations made on the Montimage Monitoring Tool 
(MMT) to detect SlowDoS attacks, Section 2.2.2 exposes the advances on the UTRC data analysis module that 
used machine learning techniques to detect misbehaviours on sensed data values, Section 2.2.3 presents the 
adaptations introduced in the XL SIEM component to support the new alerts and perform the evaluation of 
the different mitigation plans, and Section 2.2.4 explains the new Resource and QoS Monitoring component 
added to the Monitoring Module during the second iteration of the project. Finally, Section 3 presents the 
conclusions of this document. 

1.2 APPLICABLE AND REFERENCE DOCUMENTS 
This document refers to the following documents: 

• D1.5 – Final Architectural Design 
• D4.1 – Initial Monitoring Component Services Report 
• D4.3 – Initial Agents Development Report 
• D4.5 – Final Reaction Components Services Report 

1.3 REVISION HISTORY 
 

Version Date Author Description 

0.1 23/07/2019 MONT Initial ToC 

0.2 07/08/2019 CNR Integrated CNR’s contribution to ToC 

0.3 06/09/2019 CNR Added contributions to Section 2.2.1.1. 

0.4 18/09/2019 ATOS Added contributions to Section 2.2.2. 

0.5 30/09/2019 MONT 

UTRC 

Added contributions to Section 2.2 and 2.2.1. 

Added contributions to Section 2.2.3 

0.6 10/10/2019 MONT Added contributions to Sections 1.1, 2, 2.2, 3 

0.7 18/10/2019 AALTO 

MONT 

Added contributions to Section 2.2.4 

Added Conclusions and Public Summary 

0.8 21/10/2019 MONT First Complete Version 

0.9 30/10/19 AALTO Final revision of the deliverable 

1.0 31/10/19 MONT Addressing revisor’s comments and delivery version. 
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1.4 ACRONYMS AND DEFINITIONS 
 

Acronym Meaning 

CP Constraint Programming 

CSP Constraint Satisfaction Problem 

DDoS Distributed Denial of Service 

DoS Denial of Service 

EFSM Extended Finite State Machine 

FTP File Transfer Protocol 

HTTP HyperText Transfer Protocol 

IDS Intrusion Detection System 

LCM Life Cycle Management 

MiTM Man-in-The-Middle 

MMT Montimage Monitoring Tool 

SDA Slow DoS Attack 

SMTP Simple Mail Transfer Protocol 

SSH Secure SHell 

TCP Transmission Control Protocol 

VNF Virtual Network Function 

BMS Building Management Systems 
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2 ANASTACIA MONITORING MODULE 
The ANASTACIA Monitoring Module has been conceived to provide the platform with a set of monitoring 
components that allow the system operator to detect security breached and privacy issues. 

The Monitoring Module has been further extended to provide support for novel threats on the ANASTACIA 
platform. The following sections describe the principal innovations introduced in the Monitoring Module at 
the design level of the module, and particularly in each on the components that form the ANASTACIA 
monitoring module. 

2.1 ARCHITECTURAL DESIGN 
During the second phase of the ANASTACIA development, the General Architecture of the platform has seen 
some changes. These modifications included changes in the Monitoring Module, which now allow the 
Security Orchestrator to have knowledge about the amount of resources being used and enforce QoS in the 
monitored network. Figure 1 shows the new design of the Monitoring Module as reported in D1.5. 

 
Figure 1 General Design of the ANASTACIA Monitoring Module 

In this final design, the main four components of the Monitoring Module can still be recognized. Their main 
functions have not been changed and remain as explained in D4.1: 

• Data Filtering and Pre-processing Broker: A common channel to transfer data between the 
monitoring agents and the monitoring module. 

• Data Analysis: A behavioural-based analysis module used to detect anomalies in IoT sensors. 
• Attack Signatures: Repository of attack signatures that the ANASTACIA platform will use to detect 

security threats. 
• Incident Detector: A collector of all the extracted data that raises alerts once a security threat has 

been detected. 

Along with these four components, a new one has been added: 

• Resource and QoS Monitoring: A component that actively monitors the network and determines the 
level of resources used to enforce QoS policies. 

The five components here presented have been implemented in the monitoring module. The details about 
the underlying technologies that bring these components to life are given in the following Sections. 

2.2 IMPLEMENTATION DETAILS 
Given the design presented in the previous Section, the ANASTACIA platform implements this design by 
means of introducing four monitoring components: 
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• Montimage Monitoring Tool: An DPI-based event-correlation security tool that analyses the network 
traffic on the monitored network. 

• UTRC Data Analysis module: A machine learning-based module that continuously monitors and 
analyses the data extracted from sensors in order to detect anomalies in the measurements. 

• ATOS XL SIEM: An event-correlation engine that processes the information received by the 
aforementioned detectors, perform a correlation of these events at a higher level, and evaluate the 
impact and risks of the different mitigation strategies. 

• Resource and QoS Monitoring: An extension of the Security Orchestrator module that takes actively 
monitors the used resources in order to support the decisions taken in the Security Orchestrator. 

The following subsection gives details about the implementation of the aforementioned components. 

2.2.1 Montimage Monitoring Tool 
The Montimage Monitoring Tool (MMT) is one of the principal security assets that allow the ANASTACIA 
platform to monitor the network flows and perform signature-based security analysis. 

As described in D4.1, the MMT software uses a library of rules that define: (1) security properties that need 
to be respected at all times, or (2) attack signatures, defining the conditions and trigger network events that 
need to be produced to detect an attack. During the second iteration of ANASTACIA, the MMT software was 
extended to support two new detection rules aiming to support the final case of study: 

• A rule for detecting potential data leaks from an IoT network. 
• A SlowDoS attack detection rule. 

The first rule aims to detect and prevent potential data leaks from the IoT network. It makes use of a whitelist 
that contains the IP addresses of the trusted BMS servers of the system. In this sense the IoT controllers are 
allowed to send information only to these servers, so any packet containing the CoAP or DTLS protocol that 
does not go to one of the specified servers might be a potential data leak. 

Being this said, Montimage has implemented a rule that keeps this whitelist of IPs, examines the protocols 
contained on the network packets, and extracts the destination IP addresses of these. Using this information, 
the MMT-Security is capable of determining if the flow uses the involved protocols and raise an alert in case 
the information has not been sent to a trusted network. In this case, MMT will raise an alert and trigger the 
whole ANSTACIA reaction process, applying and appropriate mitigation for this potential security and privacy 
leak. 

The second rule is one of the main innovations of the monitoring module. Montimage has worked with CNR 
in order to develop a SlowDoS detection algorithm and implement it in the MMT software. The following 
sections give more details about this development. 

2.2.1.1 CNR Slow-DoS Detection Algorithms 

Among all the methodologies used to successfully execute malicious cyber operations, denial of service 
attacks (DoS) are executed with the aim of exhaust victim’s resources, compromising the targeted systems’ 
availability, thus affecting availability and reliability for legitimate users. These threats are particularly 
dangerous, since they can cause significant disruption on network-based systems. The term Slow DoS Attack 
(SDA), coined by the CNR research group involved in the project, concerns a DoS attack which makes use of 
low-bandwidth rate to accomplish its purpose [2]. An SDA often acts at the application layer of the Internet 
protocol stack because the characteristics of this layer are easier to exploit to successfully attack a victim 
even by sending it few bytes of malicious requests. Moreover, under an SDA, an ON-OFF behaviour may be 
adopted by the attacker, which comprises a succession of consecutive periods composed of an interval of 
inactivity (called off-time), followed by an interval of activity (called on-time). Such behaviour is possible since 
specific server-side timeouts are exploited by the attacker [4]. 
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In order to protect from Slow DoS Attacks, it is important to consider the following fact: it is trivial to detect 
and mitigate a single attacking host, while it is extremely difficult to identify a distributed attack. This fact 
derives from the fact that IP address filtering may be applied to detect and mitigate an SDA (see, for instance, 
tests on mod-security [4]), while in case of a distributed attack this concept may not be adopted with ease. 
Moreover, from the stealth perspective, if we consider Slow DoS Attacks like SlowComm or Slowloris, they 
are particularly difficult to detect while active, since log files on the server are often updated only when a 
complete request is received or a connection is closed: being our requests typically endless, during the attack 
log files do not contain any trace of attack. Therefore, different approaches should be adopted. In accordance 
to ANASTACIA deliverable D2.8, a possible slow DoS detection approach makes use of the concepts described 
in [3] to extract data able to characterize a Slow DoS Attack. Such intrusion detection framework may be 
applied with different algorithms like the one proposed in [1]. 

In particular, the model is specific to request-response protocols [3] acting at the application layer and 
making use of the TCP transport protocol. At this layer, the protocol is based on messages exchanged 
between two entities, commonly known as client and server. Some examples of request-reply protocols are 
HTTP, FTP, SMTP, SSH. If we consider such protocols, in normal conditions, after the client/server connection 
is established, the client sends a request to the server. Hence, the request is interpreted by the server in 
order to generate a response to send back to the client. After the first request-response exchange, two 
possible events could characterize the connection: 

1. The connection is closed; 
2. The connection is kept alive (we talk in this case of persistent connection), to reduce the connection 

overhead for any additional request-response between the same client/server pair. 

By considering each TCP connection, we define a connection slot as the portion of a connection which refers 
to the time passing between the start of a request and the end of the relative response on the same stream. 
Hence, for each TCP connection, we first extract the number of connection slots, plus the delta_start value 
[3]. Hence, for each connection slot, we extrapolate the remaining delta values described in [3], along with 
other TCP values related to packets number and size, according to the assumption reported in the same 
scientific article. 

Hence, at the end of the process, we have two separate tables, respectively known as connections table 
(including the number of connection slots and the related delta_start value, for each TCP connection) and 
connections slots table (referring to a set of connections slots, characterized by the delta values and other 
selected values computed from TCP packets). These tables are built by analysing the packets that transverse 
the network in the following manner: (1) the packet is associated to its TCP connection by using the IP 
addresses and the port numbers, (2) the connection slot is identified by either analysing the content or the 
direction of the packet, and (3) the statistics for the connection slot are updated using the metadata of the 
packet. 

After such tables are derived, through live traffic analysis, the data analysis process is triggered. The adopted 
data analysis algorithm is based on the work reported in [3], making use of statistical properties to compare 
a potentially anomalous condition, obtained from live traffic data, with a pre-computed condition that is 
considered representative of all the legitimate conditions. In this case, through the 3-sigma rule [1], it is 
possible to identify relevant variations of selected delta parameters from normal situations, hence identify 
an attack and flag it as anomalous traffic. 

2.2.1.2 Implementation of SlowComm Detection Algorithm in MMT 

The last section describes a SlowDoS algorithm that can be effectively used by analysing the values of the 
TCP packets. To this end, an implementation of the connection slots table was implemented for the MMT 
software. The following sections go deeper about how data is extracted from TCP flows, how the connection 
slots table is maintained and how its data is used to detect SlowDoS attacks. 
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2.2.1.2.1 Network Traffic Caracterization 

As mentioned before, the detection algorithm presented in [3] makes some assumptions about the type of 
the flows that can contain a SlowDoS attack: 

1. Usage of TCP protocol: This assumption allowed us to use metadata about the TCP protocol in order 
to detect the start and end of both requests and responses. 

2. Communication based on requests and responses: By assuming there is a request for each response, 
it is possible to model the communication as a state machine, whose actual state changes depending 
on how the flow behaves. 

3. Absence of overlapping connection slots on the same flow: This simply means that there might not 
be a second request as long as the first one has not been answered by the server. In the case of the 
HTTP protocol, the application of this technique is called “request pipelining” (see Section 6.3.2 in 
[5]), and despite most of the major support this feature, its client-side implementation has been 
removed from the major browsers of the market1. It is important to remark that other protocols (in 
particular HTTP/2) might support request pipelining, which makes the detection technique more 
complex. 

Considering the nature of the network traffic that will be analysed (an attack using HTTP 1.1 protocol), the 
aforementioned assumptions allow us to simplify the problem in order to propose a baseline for further 
extensions of the proposed implementation. 

2.2.1.2.2 Modelling Network Flows 

By combining the first two assumptions mentioned in the last section, we can model the TCP connection as 
an Extended Finite State Machine (EFSM) [6], triggering its transitions depending on some characteristics of 
each TCP packet: the flags, the size of the payload, the direction in which the packet goes (client to server or 
vice versa). It is also noticing that these triggering transitions also depend on the flow’s last packet for the 
same aforementioned values. 

Moreover, by adding the third assumption and avoiding analysing pipelined connection slots, we can merge 
both of the table used to detect the attack into a single one. This is due to the fact that one connection will 
be established (thus computing a delta_start value) and then a single request-response pair will be 
transmitted before sending the next one. This allows keeping a single entry on the table per TCP flow, on 
which all the subsequent slots (i.e.  request-response pairs) will share the same delta_start value. 

Being this said, the table will contain the delta values only for the latest connection slot (request-response 
pair), and it will override the older values if the client decides to reuse the network flow to transmit a new 
connection slot. 

Figure 2 shows the EFSM model of a TCP flow whose transitions are triggered by using the metadata of the 
TCP packets. To keep the figure clear, the states representing the closing of the connection are not shown, 
along with the transitions that lead to these states. It is also important to remark that this machine models 
the state of a single TCP flow, so an implementation will require to maintain an instance of this machine for 
each TCP flow detected. 

 
1 Internet Explorer: https://blogs.msdn.microsoft.com/ie/2005/04/11/internet-explorer-and-connection-limits/  
Chrome: https://www.chromium.org/developers/design-documents/network-stack/http-pipelining  
Mozilla: https://bugzilla.mozilla.org/show_bug.cgi?id=1340655  
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Figure 2 EFSM used to model a TCP-based request-response protocol. 

To keep the figure clean, some of the information has been removed from the diagram: (1) each transition 
of the machine consumes a packet of the TCP flow; (2) depending on some metadata of the packet (TCP flags, 
payload size, direction of the flow), the machine decides the next state; (3) two states are not shown 
“CLOSING” and “CLOSED”, which are used when the connection finishes or resets; (4) all the transitions going 
to the closing states are also hidden (each state two transitions that are executed with FIN and RST packets, 
leading to the state not shown); (5) the updates of the context variables (deltas) are also not shown, which 
are updated at each triggered transition; (6) after updating the context variables, the machine will emit a 
verdict depending on the values of the deltas; these outputs are also not shown. 

The EFSM presented is a simplified version of the TCP state machine presented in [7], that has been adapted 
to support two types of “established” states; these new states represent the transfer of a request or a 
response, respectively, which helps measuring the times of the deltas for the current connection slot. These 
modifications go in line with the assumptions used to simplify the detection algorithm. 

2.2.1.2.3 Design of the MMT Rule for the Detection Algorithm 

The EFSM presented above follows the TCP flow in a per-packet basis, using metadata from each packet to 
keep track of the status of the network flow. To fulfil this requirement, the detection algorithm was 
implemented as an MMT attack rule, taking advantage of the MMT-DPI engine to extract the required 
metadata of each TCP flow. This rule was designed to analyse each TCP packet, keeping track of all the flows 
concerned. Table 1 shows the MMT rule that implements the detection algorithm. 

Table 1 General schema of the SlowDoS detection rule 

<beginning> 
 <!-- Property 77: SlowComm DDos attack --> 
 <embedded_functions> 
 <!—Code used to emulate the EFSM execution --> 
 </embedded_functions> 
 <property value="THEN" delay_units="mms" delay_min="0" delay_max="+0" property_id="77" 
type_property="ATTACK" description="SlowComm DDos attack"> 
  <!-- Detect any TCP packet as declared in the IP headers --> 
  <event value="COMPUTE" event_id="1" description="Any TCP packet" 
boolean_expression="((#is_exist(tcp.p_payload) != 2) &amp;&amp; (ip.proto_id == 6) &amp;&amp; 
(ip.src != ip.dst))"/> 
  <!-- Evaluate the values of the deltas using the data form the last event --> 

STARTED IN REQ END REQ IN RESP END RESP

SYN+ACK
recv

ACK recv

if(dir = 0 &
pload > 0)
data recv

ACK recv

if(dir = 0 &
pload > 0)
data recv

if(dir = 1 &
pload > 0)
data recv

if(dir = 1 &
pload > 0)
data recv

ACK recv

if(dir = 1 &
pload > 0)
data recv

if(dir = 0 & pload > 0)
data recv
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  <event value="COMPUTE" event_id="2" description="Evaluate deltas" 
boolean_expression="(#em_check_delta_request(ip.session_id.1, meta.utime.1, tcp.flags.1, 
tcp.p_payload.1, tcp.payload_len.1, meta.direction.1))"/> 
 </property> 
</beginning> 

The rule is composed of two events. The first (context) validates that the detected packet contains the TCP 
protocol by means of detecting the “protocol_ID” field in the IP headers. The other two network events are 
used to ensure that the rule is triggered even in the absence of payload and to print the IP addresses. The 
second event is a simple invocation to the EFSM presented above using the metadata from the first network 
event: a session_id (automatically generated by MMT using IP addresses and ports), a timestamp, the TCP 
flags, the TCP payload, the TCP payload length and the direction of the packet. In this case, the function 
em_check_delta_request implements the detection algorithm and returns the verdict as computed by the 
EFSM. 

2.2.1.2.4 Execution of the Detection Algorithm 

The embedded function em_check_delta_request has been designed to keep track of each network flow, 
contain the execution of its respective EFSM instance, and return the verdict for each packet analysed. To 
this end, the function contains a list of structures that: (1) identifies the flow to which this entry belongs to 
using the MMT session ID; (2) captures the execution state of the machine; (3) maintains metadata of the 
last package received; and (4) keeps track of the delta values for the session ID. 

For each TCP packet, the em_check_delta_request function is invoked, performing the following process: 

1. Check the list of known flows by comparing the session ID given by MMT. 
a. If no flow was found, create a new entry in the registry, assigning the state of the connection 

as “STARTED” (since the packet is – most likely – a SYN packet). 
2. If an entry was found, change the state of the machine according to the conditions shown in Figure 

2. 
3. Use the state of the execution and the given timestamp to update the corresponding delta value. 
4. Check that the values of the deltas do not violate the specified thresholds: 

a. In case a value of a delta exceeds the threshold, return the corresponding verdict. 

With this implementation it has been possible to detect the SlowComm attack as defined in [2], defining the 
implementation of the SlowDoS detection algorithm that will be used in the ANASTACIA instance. 

2.2.2 UTRC Data Analysis Engine 
UTRC data analysis engine learns a constraint-based decision model to identify compromised cyber-physical 
devices. A novel approach to identify attacker by making use of Constraint Satisfaction Problem (CSP) and 
declarative programming frameworks has been proposed. The main contributions are twofold, listed as 
follows: a) learning constraint-based model for capturing the normal behaviour of a given cyber-physical 
system, b) an approach that provides explanation when a potential anomaly is detected by reporting which 
constraints fails to satisfy the model, c) an approach to incorporate user-defined constraints that can be easily 
integrated with the constraints learn from the data. The developed behaviour engine can handle multiple 
advanced attacks of different types, such as MiTM and flooding. We experimentally demonstrate the utility 
of our work on real datasets of cyber-physical device. This framework states constraints over network 
packets, describing relations between several packets, and modelled using Constraint Programming (CP) 
methodologies to find those intrusions. Although there are some Intrusion Detection Systems (IDSs) which 
provide native methods, characterized from scratch to allow the description of outliers or anomaly 
behaviour, which is found across several network packets, most IDSs either use signatures that only involve 
network features or allow constraints between several network features. However, these constraints are 
achieved in a very basic and limited way, often using ad-hoc tools. In contrast, our constraints are dynamic 
and learned over the time. 
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As described earlier in D4.3, our constraint model is composed of variables – extracted features from the 
data, and constraints – representing the allowed occurrence of each feature value happening simultaneously 
at any given point in time. The data format of the features can be of several types: continuous, discrete, 
events (on/off), etc. We choose to represent our model in terms of continuous variables and binary relations 
expressed in the form of table constraint. In the case of continuous data type, we perform clustering to create 
discrete domains. Note that the concept of over/underfitting applies when we generalise the data using 
clustering to create intervals for the variable domains to build the model for normal behaviour. Each interval 
is denoted by a symbolic integer value and the domain is the set of such integer values. 

Algorithm Description: 

Generally, most of the anomaly-based intrusion systems build a model of the normal behaviour of the 
monitored system. The built model is then used to compare a currently observed behaviour to the normal 
behaviour to determine whether the current state is a normal or an anomaly mode. Similarly, we have 
followed three steps to get the best detection model: a) building an initial model, b) learning the best model, 
and c) verification of the best model. In the first step, we create an initial model capturing all features and all 
possible relations using a historical dataset that describes the normal behaviour of the monitored system. 
Later in the second step, we use another labelled dataset that captures a mixture of normal and anomalous 
behaviour in order to select the best sub-model in terms of performance. In the third step, we use another 
unseen dataset to verify the performance of the selected sub-model. 

Learning best model: 

In order to learn the best model, we use an unseen labelled dataset (validation data) which contains data 
describing the normal and abnormal behaviours of the system. This dataset can be obtained either by 
applying attack functions on unseen data describing normal behaviour to insert malicious behaviour or for 
example from simulations. No matter how the validation data is obtained it is a labelled dataset where for 
each point in time we know whether the system describes a normal or abnormal behaviour. 

We evaluate this dataset using the initial model. Evaluation is done by predicting a verdict (normal/anomaly) 
for each time point in the dataset and comparing this to the ground truth described by the labels of the 
dataset. Once we evaluated the dataset, we build an optimization problem, minimizing the error between 
the ground truth and predicted verdicts such that the optimal sub-set of variables and relations from the 
initial model is identified. In other words, we try to select a sub-set of features and relations such that the 
error between ground truth and expected verdicts is minimum. 

 
Figure 3 Dataset Evaluation Using the Initial Model 
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In order to evaluate a dataset, we follow the steps shown in Figure 3. In here k denotes the number of raw 
features and n denotes the number of raw and auxiliary features, thus k < n. Given a monitored system that 
has d_k raw features we observe a value for each raw feature for each time-point. Generate step shows the 
process of generating the required features of the model for each time point. We further refer to this as the 
state of the monitored system with respect to the model. This state consists of set of values for all features 
in a given point in time, S = {p_1, p_2, .., p_n} where p_i is the value associated to a feature for a given a time 
instant. An assignment A = {a_1, a_2, …,  a_n}, where a_i is a symbolic label associated to a feature that is 
calculated for each state. This is done at the mapping step in Figure 3. An assignment has an assignment cost 
associated to it which consists of the sum of feature costs for each feature and relation costs for each relation 
for a given time-point.  Once we obtain an assignment and its respective cost for all time-points in the 
validation data following the steps shown in Figure 3 the following steps are taken: 

1) Create cost table: We collect all assignment costs for all time points in the validation data with respect to 
the initial model. Verdicts are obtained by comparing assignment costs to the threshold of the model. The 
cost table serves as a tabular data structure that is used to get the best model. The cost table contains cost 
information about all features and all relations in the initial model for every time point from validation data 
analysed as shown above. 

2) Compare predictions with ground truth: Since we have a labelled dataset in order to learn from the 
predictions the initial model provided, we compare these predictions to the ground truth represented by the 
labels in the dataset.  

3) Select best model: We use an optimization model to select the best model. The optimization model takes 
as input the following: cost table along with features, relations and threshold value of the initial model, the 
verdicts associated to each time point and the respective ground truth. It outputs a sub-set of features, 
relations and a threshold value, that will be used by the best model. A CP model is built to select the features 
and relations with the following objective: select the minimum number of features and relations between 
them, such that the difference between ground truth and the predicted verdict depending on the assignment 
costs of the sub-selection is minimal. The difference between ground truth and verdict is obtained using the 
notion of attack windows as described above. Once we obtain the learned threshold value and the set of 
features and relations, we build the best model. We use a third unseen labelled dataset to test the 
performance of the best model with regard to unseen data. 

Once we obtain the best model, we deploy the learned model on monitoring agent. In the end, the developed 
monitoring agent is able to detect following attacks, a) MiTM, b) Flooding, and c) Slow DoS. However, for the 
project demonstration, we have deployed our monitoring agent from the perspective of MiTM attack only. 

2.2.3 ATOS XL-SIEM 
The XL-SIEM has been extended in the second iteration of the ANASTACIA platform in two ways: 

1. Support to process and alert about additional attacks detected by the ANASTACIA probes deployed 
in the IoT infrastructure.  

2. Integration with the Verdict and Decision Support System (VDSS) at the Reaction module to calculate 
risk levels associated to an incident. 

The following subsections detail these advancements. 

2.2.3.1 Integration of new attacks at the XL-SIEM 

During the second iteration of the ANASTACIA platform the MMT probe has been extended with the 
capability to provide with evidences of anomalous activities with the support of detecting SlowDDoS attacks 
and detection of anomalous communication with untrusted destination that might infer a potential data 
leakage. To be able to process the new information the following activities has been carried out at the XL-
SIEM: 
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• Adaptation of the MMT plugin at the XL-SIEM agent to process the new evidences. 
• Adaptation of the XL-SIEM server with new correlation rules. 

 
Figure 4. XL-SIEM plugin schema for the MMT Probe after the second iteration 

Adaptation of the MMT plugin at the XL-SIEM agent to process the new evidences 

As described in D4.1, the XL-SIEM task is to normalize the events received, through its rsyslog server, in a 
common format that is processable by the XL-SIEM server. The events normalized by the XL-SIEM agent is a 
JSON which is described in Table 1 of D4.1. Among others, it contains the source IP of the identified event, 
the destination IP of the targeted device or the date of the event. It is important to highlight the plugin_id 
and plugin_sid, which identifies the type of message so that it can be understood by the XL-SIEM server. 
Custom fields (called user data) allows to insert additional information contained in the event that is worth 
to be preserved and transmitted to the XL-SIEM server.  

In order to know what the information is to extract from the event received we need to analyse the taxonomy 
of the event and the information contained. New events have been introduced in the second iteration of the 
development of the ANASTACIA platform. The following is an example of event received from the MMT Probe 
representing a SlowDoS incident.  

2019-09-18T08:05:05.019Z hephasto.local MMT-Probe - - - 
{"reportType":"security","probeID":3,"source":"/home/diego/capture_SlowComm.pc
ap","timestamp":1.568726462E9,"propertyID":77,"verdict":"detected","securityTy
pe":"attack","cause":"SlowComm DDos 
attack","sourceIP":"150.145.21.204","destIP":"150.145.11.130","sourceMAC":"AA-
AA-AA-AA","destMAC":"BB-BB-BB"} 

The following table represents the matching between the fields received in the MMT probe and the 
normalized event fields: 
Table 2. Matching of fields between MMT Probe and normalized event for "SlowComm" events 

MMT Probe Event field Normalized event field Value in example 

XL-SIEM server VDSS 

XL-SIEM agent 

DDoS Detection 
stats SQLi SlowComm Untrusted 

destination 

New 

Rsyslog server 

DPI Analysis (MMT Probe) 

Plugins 
New 
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not applicable plugin_id 32000 

not applicable plugin_sid 133 

2019-09-18T09:08:05.019Z date 2019-09-18T09:08:05.019Z 

sourceIP src_ip 150.145.21.204 

destIP dst_ip 150.145.11.130 

sourceMAC userdata1 AA-AA-AA-AA 

destMAC userdata2 BB-BB-BB 

verdict userdata3 detected 

probeID userdata5 3 

source userdata6 /home/diego/capture_SlowComm.pcap 

propertyID userdata7 77 

timestamp userdata8 1.568726462E9 

cause not applicable. Used to 
identify type of event 

SlowComm DDos attack 

The normalized event results in the following JSON: 
2019-09-18 09:08:05,019 Output [INFO]:  
{"event":{ 
 "type":"detector", 
 "date":"1568797685", 
 "device":"10.0.2.4", 
 "interface":"enp0s3", 
 "plugin_id":"32000", 
 "plugin_sid":"133", 
 "src_ip":"150.145.21.204", 
 "dst_ip":"150.145.11.130", 
 "userdata1":"QUEtQUEtQUE=", 
 "userdata2":"QkItQkItQkI=", 
 "userdata3":"ZGV0ZWN0ZWQ=", 
 "userdata5":"Mw==", 
 "userdata6":"L2hvbWUvZGllZ28vY2FwdHVyZV9TbG93Q29tbS5wY2Fw", 
 "userdata7":"Nzc=", 
 "userdata8":"MS41Njg3MjY0NjJFOQ==", 
 "log":"U2VwIDE4IDA5OjA4OjA1IDEyNy4wLjAuMSBNTVQtUHJvYmUgLSAtIC0geyJyZXBvcnRUeXBlI
joic2VjdXJpdHkiLCJwcm9iZUlEIjozLCJzb3VyY2UiOiIvaG9tZS9kaWVnby9jYXB0dXJlX1Nsb3dDb21tLnBj
YXAiLCJ0aW1lc3RhbXAiOjEuNTY4NzI2NDYyRTksInByb3BlcnR5SUQiOjc3LCJ2ZXJkaWN0IjoiZGV0ZWN0ZWQ
iLCJzZWN1cml0eVR5cGUiOiJhdHRhY2siLCJjYXVzZSI6IlNsb3dDb21tIEREb3MgYXR0YWNrIiwic291cmNlSV
AiOiIxNTAuMTQ1LjIxLjIwNCIsImRlc3RJUCI6IjE1MC4xNDUuMTEuMTMwIiwic291cmNlTUFDIjoiQUEtQUEtQ
UEiLCJkZXN0TUFDIjoiQkItQkItQkIifSA=", 
 "fdate":"2019-09-18 09:08:05", 
 "event_id":"d9f311e9-a789-0800-27ea-052cd2e7c882" 
}} 

It is worth noticing that the userdata fields are coded using base64. The log field contains the original event 
received by the MMT Probe while the event_id uniquely identifies this event. 

Similarly, for the event received from the MMT Probe representing a potential Data Leak, being it the 
following: 
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2019-09-18T09:08:04.513Z hephasto.local MMT-Probe - - - 
{"reportType":"security","probeID":3,"source":"enp0s8","timestamp":1.568725931
E9,"propertyID":99,"verdict":"not_respected","securityType":"security","cause"
:"Data sent to untrusted destination - potential data 
leakage","sourceIP":"10.0.3.90","destIP":"10.0.3.80","sourceMAC":"AA-AA-
AA","destMAC":"BB-BB-BB"} 

The following table represents the matching between the fields received in the MMT probe and the 
normalized event fields: 

Table 3. Matching of fields between MMT Probe and normalized event for "Unstrusted destination" events 

MMT Probe Event field Normalized event field Value in example 

not applicable plugin_id 32000 

not applicable plugin_sid 144 

2019-09-18T09:09:08.513Z date 2019-09-18T09:09:08.513Z 

sourceIP src_ip 150.145.21.204 

destIP dst_ip 150.145.11.130 

sourceMAC userdata1 AA-AA-AA-AA 

destMAC userdata2 BB-BB-BB 

verdict userdata3 detected 

securityType userdata4 security 

probeID userdata5 3 

source userdata6 /home/diego/capture_SlowComm.pcap 

propertyID userdata7 99 

timestamp userdata8 1.568725931E9 

cause not applicable. Used to 
identify type of event 

Data sent to untrusted 
destination - potential data 
leakage 

The normalized event results in the following JSON: 

2019-09-18 09:08:04,513 Output [INFO]:  
{"event":{ 
 "type":"detector", 
 "date":"1568797684", 
 "device":"10.0.2.4", 
 "interface":"enp0s3", 
 "plugin_id":"32000", 
 "plugin_sid":"144", 
 "src_ip":"10.0.3.90", 
 "dst_ip":"10.0.3.80", 
 "userdata1":"QUEtQUEtQUE=", 
 "userdata2":"QkItQkItQkI=", 
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 "userdata3":"bm90X3Jlc3BlY3RlZA==", 
 "userdata4":"c2VjdXJpdHk=", 
 "userdata5":"Mw==", 
 "userdata6":"ZW5wMHM4", 
 "userdata7":"OTk=", 
 "userdata8":"MS41Njg3MjU5MzFFOQ==", 
 "log":"U2VwIDE4IDA5OjA4OjA0IDEyNy4wLjAuMSBNTVQtUHJvYmUgLSAtIC0gey
JyZXBvcnRUeXBlIjoic2VjdXJpdHkiLCJwcm9iZUlEIjozLCJzb3VyY2UiOiJlbnAwczgiL
CJ0aW1lc3RhbXAiOjEuNTY4NzI1OTMxRTksInByb3BlcnR5SUQiOjk5LCJ2ZXJkaWN0Ijoi
bm90X3Jlc3BlY3RlZCIsInNlY3VyaXR5VHlwZSI6InNlY3VyaXR5IiwiY2F1c2UiOiJEYXR
hIHNlbnQgdG8gdW50cnVzdGVkIGRlc3RpbmF0aW9uIC0gcG90ZW50aWFsIGRhdGEgbGVha2
FnZSIsInNvdXJjZUlQIjoiMTAuMC4zLjkwIiwiZGVzdElQIjoiMTAuMC4zLjgwIiwic291c
mNlTUFDIjoiQUEtQUEtQUEiLCJkZXN0TUFDIjoiQkItQkItQkIifSA=", 
 "fdate":"2019-09-18 09:08:04", 
 "event_id":"d9f311e9-a789-0800-27ea-052cd29a77bc" 
}} 

Adaptation of the XL-SIEM server with new correlation rules  

The next step in the process of processing new events is the configuration of the XL-SIEM server to trigger 
the corresponding alerts when those events are received. As described above, two important fields are used 
at the XL-SIEM server to identify the new events: the plugin_id, which identifies the probe that sent the event 
(in this case it is 32000 which corresponds to the events received from the MMT Probe) and the plugin_sid 
which identifies the type of event (in this case it is 133 for the SlowComm event and 144 for the untrusted 
destination event). 

With this information new rules are created at the XL-SIEM to trigger alerts associated to those events. There 
are many possibilities to create those rules, adding conditions that allows to fine tune the generation of the 
alert to certain context, associated to aspects such as the value of the fields received, the number of events 
received in certain period of time, etc. In this case, the rules are created to trigger an alert when two events 
received from the same probe. The rule specifies that for a time window of 60 seconds, no alerts are repeated 
even if they are received with the same source IP. This is used to avoid repetition of the same alert. The rule 
also force that the events received must have the same source IP and destination IP in order to trigger an 
alert. This is done not to mix events associated to different targets, which probably might denote a different 
incident. The following table details the alert using the Esper notation used at the XL-SIEM: 
Table 4. New rules created at the XL-SIEM server 

Name Rule Priority Reliability 

MMT Probe - Potential 
data leakage detected 

pattern [ every-distinct(a.src_ip, 60 seconds) 
a=MMT_Probe_Untrusted -> 
b=MMT_Probe_Untrusted ((b.src_ip=a.src_ip) and 
(b.dst_ip=a.dst_ip)) ] 

2 8 

MMT Probe - Slow 
DDoS Attack Detected 

pattern [ every-distinct(a.src_ip, 60 seconds) 
a=MMT_Probe_SlowComm -> 
b=MMT_Probe_SlowComm ((b.src_ip=a.src_ip) and 
(b.dst_ip=a.dst_ip)) ] 

5 9 

The following screenshot represents the ATOS XL-SIEM dashboard showing the new alerts triggered when 
new events are received from the MMT Probe. 
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Figure 5. XL-SIEM dashboard showing alerts for the new events 

 

2.2.3.2 Integration with the VDSS 

As it can be seen in Figure 5, every alert there is a Risk level which is calculated by the XL-SIEM by using 
different values associated to the events received and to the device affected. As described in D4.1, this risk 
level is calculated using the following formula: 

𝑅𝑖𝑠𝑘 = 	
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∗ 𝐴𝑠𝑠𝑒𝑡23456789:;

25
 

Reliability is a value that represents the accuracy of the detection, while the Priority represents the 
importance of the event received. Both values are given by the CISO using the XL-SIEM dashboard. The third 
variable is the Asset importance, which represents the criticality of the device affected by the attack. During 
the first iteration of the ANASTACIA implementation this value was inserted by the CISO using the XL-SIEM 
dashboard. After its integration with the VDSS (see D4.5), this value is calculated automatically based on the 
location and the type of device. The XL-SIEM server is capable of requesting to the Security Model Service 
this information, which is retrieved directly from the Orchestrator. The CISO might have set at the VDSS levels 
of importance to the different locations of the IoT infrastructure, and also to the different type of devices.  

 
Figure 6. GUI used by the CISO to set location and device type importance levels 
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This information is used by the XL-SIEM to define the level of risk, resulting in the following formula. Being LI 
and DTI the Location Importance and the Device Type Importance scores respectively: 

𝑅𝑖𝑠𝑘 = 	
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∗ 𝐴𝑠𝑠𝑒𝑡23456789:;	(𝐿𝐼, 𝐷𝑇𝐼)

25
 

Being 

𝐴𝑠𝑠𝑒𝑡23456789:; = 	
𝐿𝐼 + 𝐷𝑇𝐼

2
 

With this we can obtain a more accurate risk level that is tailored to the characteristics of the IoT 
infrastructure to monitor. The alert generated by the XL-SIEM is sent to a RabbitMQ server (using the queue 
exchange_alarms). Further details of the rest of the process is given in D4.5 as part of the VDSS activities at 
the Reaction Module. 

2.2.4 Resource and QoS Monitoring Component 
The orchestration system provides an internal component, named “Resource and QoS monitoring”, that 
serves to monitor the resource utilization at the network level in terms of end-to-end delay and bandwidth. 
This component also serves for monitoring different resources at deployed Virtual Network Functions (VNFs) 
in terms of CPU, RAM, and storage. The security orchestrator uses this component for ensuring life cycle 
management (LCM) of deployed services. The collected information enables the security orchestrator to 
ensure the efficient LCM of VNFs by either deploying or destroying VNFs according to the VNF and network 
states. This strategy helps for ensuring the KPIs in terms of security, delay, bandwidth, and QoS by mitigating 
the overload of VNFs and minimizing the cost by deploying the minimum number of VNFs at the right 
locations. In the literature, many tools have been suggested to monitor the network and the resources at 
different VNFs. 

2.2.4.1 Open-Source Resource and Network Monitoring Tools 

2.2.4.1.1 Nagios Core 

Nagios2 is one of the oldest and best monitoring systems that has been used to monitor the network. The 
open-source version of Nagios is Nagios Core that can enable different users to get real-time visibility about 
different hosts and services belonging to the network. This software also offers several alerts that could be 
used for optimizing and customizing the network and resources at each VNF. Nagios can monitor RAM, CPU 
and disk loads, and the number of currently running processes at each VNF. Nagios also can monitor services, 
such as SMTP, POP3, HTTP and other common network protocols used at each VNF. 

2.2.4.1.2 Icinga 

Icinga3 is a tool that is developed as a branch from Nagios to offer more functionality to the Nagios Core suite. 
Icinga is designed to be easy to install and use. It offers more functionalities than Nagios for monitoring the 
network. This tool utilizes text-based configuration files for configuring different parameters. From the 
server, different agents would be installed at different hosts, and then the server periodically keeps 
monitoring the resources at each host. 

2.2.4.1.3 Zabbix 

Zabbix is one of the first tools that has been proposed for monitoring the network and services. This tool 
provides many out-of-the-box features that make it easy to manage and extend. The users do not have to 
deal with a glut of plugins. It can also offer real-time monitoring metrics across large-scale networks. 

 
2 https://www.nagios.org/projects/nagios-core/ 
3 https://github.com/Icinga/icinga2 
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2.2.4.1.4 Prometheus 

Similar to the previous tools, Prometheus is also an open-source system that offers the network and resource 
monitoring and alerting toolkit. Prometheus has been adopted by many companies and organizations to 
monitor their networks. Recently, in 2016, Prometheus joined the Cloud Native Computing Foundation. 
Prometheus has the following features. IT offers a multi-dimensional data model with time series data 
identified by metric names and key/value pairs. The time series collection happens via a pull model over 
HTTP. It adopts also a flexible query language, named PromQL, which offers more flexibility for retrieving 
different resource information. The hosts can be discovered using a service discovery or through manual 
configuration. Finally, it offers multiple modes of graphing and dashes boarding tools. 

2.2.4.1.5 Psutil 

Psutil is a Python library that provides process and system utilities for monitoring different hosts and 
networks. Psutil is a cross-platform library for retrieving information on running processes and system 
utilization (CPU, RAM, disk, network, sensors). It is useful mainly for system monitoring, profiling and limiting 
process resources and management of running processes. It implements many functionalities offered by 
UNIX command-line tools including ps, top, lsof, netstat, ifconfig, who, df, kill, free, nice, ionice, iostat, iotop, 
uptime, pidof, tty, taskset and pmap. It supports many platforms including Linux, Windows, macOS and 
others. 

2.2.4.2 ANASTACIA QOS AND RESOURCE MONITORING TOOL. 

Using the Psutil library and Python language, we have developed the ANASTACIA QoS and resource monitor 
tool that monitors the resources at different VNFs and the delay and bandwidth of the network. To take the 
right decisions at the security orchestration plane, this component is leveraged for collecting the information 
about the resources of different deployed VNFs and the network in terms of end-to-end delay and 
bandwidth. When a VNF is instantiated, the security orchestrator injects an ANASTACIA QoS and resource 
monitor daemon into that instance, this daemon keeps sending the resource usage to the security 
orchestrator. The monitoring daemon keeps collecting in real-time the resources usage including the CPU 
usage percentage, memory details available, used and total. The monitoring agent also provides information 
about the network in terms of delay and bandwidth, as well as the security levels of different paths. We plan 
in the future to explore the ONOS API that exposes REST API for the net metering and JAVA API for QoS 
providing (Type, rate, and size). 
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3 CONCLUSIONS 
This document presented the development advances of the Monitoring Module of the ANASTACIA platform. 
These changes are grouped into two principal axes. 

First, the design of the Monitoring Module suffered minor modifications in order to support the addition of 
the new Resource and QoS Monitoring component. Since this new member has been conceived as an 
extension of the Security Orchestrator, it does not impact on the security monitoring functionality provided 
by the components already present in the module. 

Along with the general design changes, the document also exposes the major changes on the four main 
members of the monitoring module: 

• The Montimage Monitoring Tool (MMT): This software has been extended to support the detection 
of Slow DoS attacks. This was achieved by implementing an EFSM-based detection rule which 
analyses the network floes and follows the state of the client-server connection. To detect the 
attack, the rule keeps track of the partial times spent in transferring the data, raising an alert when 
the data transfer time exceeds a threshold. 

• UTRC Data Analysis Engine: This component was extended with a refined model crafted to monitor 
the data measured form IoT sensors. The new model was build using constrained-based 
programming and following a three-steps training: first, a first model is trained using a historical 
dataset of normal behaviour, aiming to model all the possible parameters and relations among them; 
secondly, a better model is learned by means of refining the previous one using mixed datasets 
(containing both normal and tampered values), aiming to reduce the number of parameters used to 
identify the presence of an attack; finally, the model is validated using an third dataset  

• ATOS XL SIEM: During the second part of the project, this component has seen two principal changes. 
On one hand, the XL SIEM was extended to support the security alerts corresponding to the novel 
attacks supported (e.g. SlowDoS). On the other hand, it has also been extended to integrate it with 
the Verdict and Decision Support System (VDSS) and calculate the risk levels associated with the 
detected security issues. 

• Resource and QoS Monitoring: This Security Orchestrator extension was implemented to allow the 
SO ensuring the lifecycle management of all the deployed services. This component has been 
implemented using open-source monitoring tool, named psutil, inserting instances of this tools in 
any new deployed instance in order to monitor the used resources and ensure the QoS of the whole 
platform. 

This deliverable finishes the activities of the T4.1, providing the ANASTACIA implementors with a simple yet 
flexible design, allowing them to include multiple security solutions into a single, federated security platform. 
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