

ANASTACIA has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement N° 731558

and from the Swiss State Secretariat for Education, Research and Innovation

D4.4
Final Monitoring Components
Services Implementation Report

Distribution level PU

Contractual date <31.10.2019> [M34]

Delivery date <30.10.2019> [M36]

WP / Task WP4

WP Leader MONT

Authors D. Rivera (MONT), E. Cambiaso (CNR), I. Vaccari
(CNR), J. Villalobos (ATOS), Miloud Bagaa
(AALTO)

EC Project Officer Carmen Ifrim
carmen.ifrim@ec.europa.eu

Project Coordinator Softeco Sismat SpA
Stefano Bianchi
Via De Marini 1, 16149 Genova – Italy
+39 0106026368
stefano.bianchi@softeco.it

Project website www.anastacia-h2020.eu

Page 1 of 21

Table of contents
PUBLIC SUMMARY ... 2

1 Introduction ... 3

1.1 Aims of the document .. 3

1.2 Applicable and reference documents .. 3

1.3 Revision History ... 3

1.4 Acronyms and Definitions .. 4

2 ANASTACIA Monitoring Module .. 5

2.1 Architectural Design ... 5

2.2 Implementation Details ... 5

2.2.1 Montimage Monitoring Tool ... 6

2.2.2 UTRC Data Analysis Engine .. 10

2.2.3 ATOS XL-SIEM .. 12

2.2.4 Resource and QoS Monitoring Component ... 18

3 Conclusions .. 20

4 References ... 21

Page 2 of 21

PUBLIC SUMMARY
This document represents the final deliverable of the task 4.1 – Monitoring Enablers. It contains description
about the changes introduced in the ANASTACIA Monitoring Module during the second phase of the project,
both at architectural level and at components level.

First, the Montimage Monitoring Tool (MMT) was further extended to detect SlowDoS attacks. These attacks
try to exhaust the connection resources of the server victim and reaches the Denial of Service condition by
not allowing any new clients to open new connections to the server. Protocols based on requests and
responses (such as HTTP and FTP) might be vulnerable to such attacks, being its detection a non-trivial task,
due to the inability to reconstruct whole requests or responses in order to analyse them. The MMT software
tackled this problem by implementing an EFSM-based detection rule that measures the partial times taken
to transfer the data (request or response) between the client and the server.

Secondly, the Data Analysis component has also be extended to actively monitor the measured data from
IoT sensors. This is achieved by learning a constraint-based decision model in three main stages: (1) building
a first model; (2) learning the best model, and (3) verifying the model. These stages are supported by
constraint-based programming in order to select the best set of features that allow effectively detecting the
desired attack.

Finally, a novel component was introduced in the general design of the monitoring module: The Resource
and QoS Monitoring component. This component has been introduced to provide the Security Orchestrator
the ability to directly monitor the amount of resources being used. This is done with the aim of allowing the
Security Orchestrator to correctly enforce QoS policies on the monitored platform.

All the aforementioned modifications along with this new member of the monitoring module, allows the
ANASTACIA Monitoring Module to extend the support for novel attacks and scenarios during the second
phase of the project.

Page 3 of 21

1 INTRODUCTION

1.1 AIMS OF THE DOCUMENT
This document updates the previous D4.1 with the new advancement on the monitoring components that
will be implemented for the ANASTACIA platform. Section 2 presents the principal developments organized
in the following manner: Section 2.2 presents the general design of the Monitoring Module in the general
ANASTACIA architecture, Section 2.2.1 presents the adaptations made on the Montimage Monitoring Tool
(MMT) to detect SlowDoS attacks, Section 2.2.2 exposes the advances on the UTRC data analysis module that
used machine learning techniques to detect misbehaviours on sensed data values, Section 2.2.3 presents the
adaptations introduced in the XL SIEM component to support the new alerts and perform the evaluation of
the different mitigation plans, and Section 2.2.4 explains the new Resource and QoS Monitoring component
added to the Monitoring Module during the second iteration of the project. Finally, Section 3 presents the
conclusions of this document.

1.2 APPLICABLE AND REFERENCE DOCUMENTS
This document refers to the following documents:

• D1.5 – Final Architectural Design
• D4.1 – Initial Monitoring Component Services Report
• D4.3 – Initial Agents Development Report
• D4.5 – Final Reaction Components Services Report

1.3 REVISION HISTORY

Version Date Author Description

0.1 23/07/2019 MONT Initial ToC

0.2 07/08/2019 CNR Integrated CNR’s contribution to ToC

0.3 06/09/2019 CNR Added contributions to Section 2.2.1.1.

0.4 18/09/2019 ATOS Added contributions to Section 2.2.2.

0.5 30/09/2019 MONT

UTRC

Added contributions to Section 2.2 and 2.2.1.

Added contributions to Section 2.2.3

0.6 10/10/2019 MONT Added contributions to Sections 1.1, 2, 2.2, 3

0.7 18/10/2019 AALTO

MONT

Added contributions to Section 2.2.4

Added Conclusions and Public Summary

0.8 21/10/2019 MONT First Complete Version

0.9 30/10/19 AALTO Final revision of the deliverable

1.0 31/10/19 MONT Addressing revisor’s comments and delivery version.

Page 4 of 21

1.4 ACRONYMS AND DEFINITIONS

Acronym Meaning

CP Constraint Programming

CSP Constraint Satisfaction Problem

DDoS Distributed Denial of Service

DoS Denial of Service

EFSM Extended Finite State Machine

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

IDS Intrusion Detection System

LCM Life Cycle Management

MiTM Man-in-The-Middle

MMT Montimage Monitoring Tool

SDA Slow DoS Attack

SMTP Simple Mail Transfer Protocol

SSH Secure SHell

TCP Transmission Control Protocol

VNF Virtual Network Function

BMS Building Management Systems

Page 5 of 21

2 ANASTACIA MONITORING MODULE
The ANASTACIA Monitoring Module has been conceived to provide the platform with a set of monitoring
components that allow the system operator to detect security breached and privacy issues.

The Monitoring Module has been further extended to provide support for novel threats on the ANASTACIA
platform. The following sections describe the principal innovations introduced in the Monitoring Module at
the design level of the module, and particularly in each on the components that form the ANASTACIA
monitoring module.

2.1 ARCHITECTURAL DESIGN
During the second phase of the ANASTACIA development, the General Architecture of the platform has seen
some changes. These modifications included changes in the Monitoring Module, which now allow the
Security Orchestrator to have knowledge about the amount of resources being used and enforce QoS in the
monitored network. Figure 1 shows the new design of the Monitoring Module as reported in D1.5.

Figure 1 General Design of the ANASTACIA Monitoring Module

In this final design, the main four components of the Monitoring Module can still be recognized. Their main
functions have not been changed and remain as explained in D4.1:

• Data Filtering and Pre-processing Broker: A common channel to transfer data between the
monitoring agents and the monitoring module.

• Data Analysis: A behavioural-based analysis module used to detect anomalies in IoT sensors.
• Attack Signatures: Repository of attack signatures that the ANASTACIA platform will use to detect

security threats.
• Incident Detector: A collector of all the extracted data that raises alerts once a security threat has

been detected.

Along with these four components, a new one has been added:

• Resource and QoS Monitoring: A component that actively monitors the network and determines the
level of resources used to enforce QoS policies.

The five components here presented have been implemented in the monitoring module. The details about
the underlying technologies that bring these components to life are given in the following Sections.

2.2 IMPLEMENTATION DETAILS
Given the design presented in the previous Section, the ANASTACIA platform implements this design by
means of introducing four monitoring components:

Page 6 of 21

• Montimage Monitoring Tool: An DPI-based event-correlation security tool that analyses the network
traffic on the monitored network.

• UTRC Data Analysis module: A machine learning-based module that continuously monitors and
analyses the data extracted from sensors in order to detect anomalies in the measurements.

• ATOS XL SIEM: An event-correlation engine that processes the information received by the
aforementioned detectors, perform a correlation of these events at a higher level, and evaluate the
impact and risks of the different mitigation strategies.

• Resource and QoS Monitoring: An extension of the Security Orchestrator module that takes actively
monitors the used resources in order to support the decisions taken in the Security Orchestrator.

The following subsection gives details about the implementation of the aforementioned components.

2.2.1 Montimage Monitoring Tool
The Montimage Monitoring Tool (MMT) is one of the principal security assets that allow the ANASTACIA
platform to monitor the network flows and perform signature-based security analysis.

As described in D4.1, the MMT software uses a library of rules that define: (1) security properties that need
to be respected at all times, or (2) attack signatures, defining the conditions and trigger network events that
need to be produced to detect an attack. During the second iteration of ANASTACIA, the MMT software was
extended to support two new detection rules aiming to support the final case of study:

• A rule for detecting potential data leaks from an IoT network.
• A SlowDoS attack detection rule.

The first rule aims to detect and prevent potential data leaks from the IoT network. It makes use of a whitelist
that contains the IP addresses of the trusted BMS servers of the system. In this sense the IoT controllers are
allowed to send information only to these servers, so any packet containing the CoAP or DTLS protocol that
does not go to one of the specified servers might be a potential data leak.

Being this said, Montimage has implemented a rule that keeps this whitelist of IPs, examines the protocols
contained on the network packets, and extracts the destination IP addresses of these. Using this information,
the MMT-Security is capable of determining if the flow uses the involved protocols and raise an alert in case
the information has not been sent to a trusted network. In this case, MMT will raise an alert and trigger the
whole ANSTACIA reaction process, applying and appropriate mitigation for this potential security and privacy
leak.

The second rule is one of the main innovations of the monitoring module. Montimage has worked with CNR
in order to develop a SlowDoS detection algorithm and implement it in the MMT software. The following
sections give more details about this development.

2.2.1.1 CNR Slow-DoS Detection Algorithms

Among all the methodologies used to successfully execute malicious cyber operations, denial of service
attacks (DoS) are executed with the aim of exhaust victim’s resources, compromising the targeted systems’
availability, thus affecting availability and reliability for legitimate users. These threats are particularly
dangerous, since they can cause significant disruption on network-based systems. The term Slow DoS Attack
(SDA), coined by the CNR research group involved in the project, concerns a DoS attack which makes use of
low-bandwidth rate to accomplish its purpose [2]. An SDA often acts at the application layer of the Internet
protocol stack because the characteristics of this layer are easier to exploit to successfully attack a victim
even by sending it few bytes of malicious requests. Moreover, under an SDA, an ON-OFF behaviour may be
adopted by the attacker, which comprises a succession of consecutive periods composed of an interval of
inactivity (called off-time), followed by an interval of activity (called on-time). Such behaviour is possible since
specific server-side timeouts are exploited by the attacker [4].

Page 7 of 21

In order to protect from Slow DoS Attacks, it is important to consider the following fact: it is trivial to detect
and mitigate a single attacking host, while it is extremely difficult to identify a distributed attack. This fact
derives from the fact that IP address filtering may be applied to detect and mitigate an SDA (see, for instance,
tests on mod-security [4]), while in case of a distributed attack this concept may not be adopted with ease.
Moreover, from the stealth perspective, if we consider Slow DoS Attacks like SlowComm or Slowloris, they
are particularly difficult to detect while active, since log files on the server are often updated only when a
complete request is received or a connection is closed: being our requests typically endless, during the attack
log files do not contain any trace of attack. Therefore, different approaches should be adopted. In accordance
to ANASTACIA deliverable D2.8, a possible slow DoS detection approach makes use of the concepts described
in [3] to extract data able to characterize a Slow DoS Attack. Such intrusion detection framework may be
applied with different algorithms like the one proposed in [1].

In particular, the model is specific to request-response protocols [3] acting at the application layer and
making use of the TCP transport protocol. At this layer, the protocol is based on messages exchanged
between two entities, commonly known as client and server. Some examples of request-reply protocols are
HTTP, FTP, SMTP, SSH. If we consider such protocols, in normal conditions, after the client/server connection
is established, the client sends a request to the server. Hence, the request is interpreted by the server in
order to generate a response to send back to the client. After the first request-response exchange, two
possible events could characterize the connection:

1. The connection is closed;
2. The connection is kept alive (we talk in this case of persistent connection), to reduce the connection

overhead for any additional request-response between the same client/server pair.

By considering each TCP connection, we define a connection slot as the portion of a connection which refers
to the time passing between the start of a request and the end of the relative response on the same stream.
Hence, for each TCP connection, we first extract the number of connection slots, plus the delta_start value
[3]. Hence, for each connection slot, we extrapolate the remaining delta values described in [3], along with
other TCP values related to packets number and size, according to the assumption reported in the same
scientific article.

Hence, at the end of the process, we have two separate tables, respectively known as connections table
(including the number of connection slots and the related delta_start value, for each TCP connection) and
connections slots table (referring to a set of connections slots, characterized by the delta values and other
selected values computed from TCP packets). These tables are built by analysing the packets that transverse
the network in the following manner: (1) the packet is associated to its TCP connection by using the IP
addresses and the port numbers, (2) the connection slot is identified by either analysing the content or the
direction of the packet, and (3) the statistics for the connection slot are updated using the metadata of the
packet.

After such tables are derived, through live traffic analysis, the data analysis process is triggered. The adopted
data analysis algorithm is based on the work reported in [3], making use of statistical properties to compare
a potentially anomalous condition, obtained from live traffic data, with a pre-computed condition that is
considered representative of all the legitimate conditions. In this case, through the 3-sigma rule [1], it is
possible to identify relevant variations of selected delta parameters from normal situations, hence identify
an attack and flag it as anomalous traffic.

2.2.1.2 Implementation of SlowComm Detection Algorithm in MMT

The last section describes a SlowDoS algorithm that can be effectively used by analysing the values of the
TCP packets. To this end, an implementation of the connection slots table was implemented for the MMT
software. The following sections go deeper about how data is extracted from TCP flows, how the connection
slots table is maintained and how its data is used to detect SlowDoS attacks.

Page 8 of 21

2.2.1.2.1 Network Traffic Caracterization

As mentioned before, the detection algorithm presented in [3] makes some assumptions about the type of
the flows that can contain a SlowDoS attack:

1. Usage of TCP protocol: This assumption allowed us to use metadata about the TCP protocol in order
to detect the start and end of both requests and responses.

2. Communication based on requests and responses: By assuming there is a request for each response,
it is possible to model the communication as a state machine, whose actual state changes depending
on how the flow behaves.

3. Absence of overlapping connection slots on the same flow: This simply means that there might not
be a second request as long as the first one has not been answered by the server. In the case of the
HTTP protocol, the application of this technique is called “request pipelining” (see Section 6.3.2 in
[5]), and despite most of the major support this feature, its client-side implementation has been
removed from the major browsers of the market1. It is important to remark that other protocols (in
particular HTTP/2) might support request pipelining, which makes the detection technique more
complex.

Considering the nature of the network traffic that will be analysed (an attack using HTTP 1.1 protocol), the
aforementioned assumptions allow us to simplify the problem in order to propose a baseline for further
extensions of the proposed implementation.

2.2.1.2.2 Modelling Network Flows

By combining the first two assumptions mentioned in the last section, we can model the TCP connection as
an Extended Finite State Machine (EFSM) [6], triggering its transitions depending on some characteristics of
each TCP packet: the flags, the size of the payload, the direction in which the packet goes (client to server or
vice versa). It is also noticing that these triggering transitions also depend on the flow’s last packet for the
same aforementioned values.

Moreover, by adding the third assumption and avoiding analysing pipelined connection slots, we can merge
both of the table used to detect the attack into a single one. This is due to the fact that one connection will
be established (thus computing a delta_start value) and then a single request-response pair will be
transmitted before sending the next one. This allows keeping a single entry on the table per TCP flow, on
which all the subsequent slots (i.e. request-response pairs) will share the same delta_start value.

Being this said, the table will contain the delta values only for the latest connection slot (request-response
pair), and it will override the older values if the client decides to reuse the network flow to transmit a new
connection slot.

Figure 2 shows the EFSM model of a TCP flow whose transitions are triggered by using the metadata of the
TCP packets. To keep the figure clear, the states representing the closing of the connection are not shown,
along with the transitions that lead to these states. It is also important to remark that this machine models
the state of a single TCP flow, so an implementation will require to maintain an instance of this machine for
each TCP flow detected.

1 Internet Explorer: https://blogs.msdn.microsoft.com/ie/2005/04/11/internet-explorer-and-connection-limits/
Chrome: https://www.chromium.org/developers/design-documents/network-stack/http-pipelining
Mozilla: https://bugzilla.mozilla.org/show_bug.cgi?id=1340655

Page 9 of 21

Figure 2 EFSM used to model a TCP-based request-response protocol.

To keep the figure clean, some of the information has been removed from the diagram: (1) each transition
of the machine consumes a packet of the TCP flow; (2) depending on some metadata of the packet (TCP flags,
payload size, direction of the flow), the machine decides the next state; (3) two states are not shown
“CLOSING” and “CLOSED”, which are used when the connection finishes or resets; (4) all the transitions going
to the closing states are also hidden (each state two transitions that are executed with FIN and RST packets,
leading to the state not shown); (5) the updates of the context variables (deltas) are also not shown, which
are updated at each triggered transition; (6) after updating the context variables, the machine will emit a
verdict depending on the values of the deltas; these outputs are also not shown.

The EFSM presented is a simplified version of the TCP state machine presented in [7], that has been adapted
to support two types of “established” states; these new states represent the transfer of a request or a
response, respectively, which helps measuring the times of the deltas for the current connection slot. These
modifications go in line with the assumptions used to simplify the detection algorithm.

2.2.1.2.3 Design of the MMT Rule for the Detection Algorithm

The EFSM presented above follows the TCP flow in a per-packet basis, using metadata from each packet to
keep track of the status of the network flow. To fulfil this requirement, the detection algorithm was
implemented as an MMT attack rule, taking advantage of the MMT-DPI engine to extract the required
metadata of each TCP flow. This rule was designed to analyse each TCP packet, keeping track of all the flows
concerned. Table 1 shows the MMT rule that implements the detection algorithm.

Table 1 General schema of the SlowDoS detection rule

<beginning>
 <!-- Property 77: SlowComm DDos attack -->
 <embedded_functions>
 <!—Code used to emulate the EFSM execution -->
 </embedded_functions>
 <property value="THEN" delay_units="mms" delay_min="0" delay_max="+0" property_id="77"
type_property="ATTACK" description="SlowComm DDos attack">
 <!-- Detect any TCP packet as declared in the IP headers -->
 <event value="COMPUTE" event_id="1" description="Any TCP packet"
boolean_expression="((#is_exist(tcp.p_payload) != 2) && (ip.proto_id == 6) &&
(ip.src != ip.dst))"/>
 <!-- Evaluate the values of the deltas using the data form the last event -->

STARTED IN REQ END REQ IN RESP END RESP

SYN+ACK
recv

ACK recv

if(dir = 0 &
pload > 0)
data recv

ACK recv

if(dir = 0 &
pload > 0)
data recv

if(dir = 1 &
pload > 0)
data recv

if(dir = 1 &
pload > 0)
data recv

ACK recv

if(dir = 1 &
pload > 0)
data recv

if(dir = 0 & pload > 0)
data recv

Page 10 of 21

 <event value="COMPUTE" event_id="2" description="Evaluate deltas"
boolean_expression="(#em_check_delta_request(ip.session_id.1, meta.utime.1, tcp.flags.1,
tcp.p_payload.1, tcp.payload_len.1, meta.direction.1))"/>
 </property>
</beginning>

The rule is composed of two events. The first (context) validates that the detected packet contains the TCP
protocol by means of detecting the “protocol_ID” field in the IP headers. The other two network events are
used to ensure that the rule is triggered even in the absence of payload and to print the IP addresses. The
second event is a simple invocation to the EFSM presented above using the metadata from the first network
event: a session_id (automatically generated by MMT using IP addresses and ports), a timestamp, the TCP
flags, the TCP payload, the TCP payload length and the direction of the packet. In this case, the function
em_check_delta_request implements the detection algorithm and returns the verdict as computed by the
EFSM.

2.2.1.2.4 Execution of the Detection Algorithm

The embedded function em_check_delta_request has been designed to keep track of each network flow,
contain the execution of its respective EFSM instance, and return the verdict for each packet analysed. To
this end, the function contains a list of structures that: (1) identifies the flow to which this entry belongs to
using the MMT session ID; (2) captures the execution state of the machine; (3) maintains metadata of the
last package received; and (4) keeps track of the delta values for the session ID.

For each TCP packet, the em_check_delta_request function is invoked, performing the following process:

1. Check the list of known flows by comparing the session ID given by MMT.
a. If no flow was found, create a new entry in the registry, assigning the state of the connection

as “STARTED” (since the packet is – most likely – a SYN packet).
2. If an entry was found, change the state of the machine according to the conditions shown in Figure

2.
3. Use the state of the execution and the given timestamp to update the corresponding delta value.
4. Check that the values of the deltas do not violate the specified thresholds:

a. In case a value of a delta exceeds the threshold, return the corresponding verdict.

With this implementation it has been possible to detect the SlowComm attack as defined in [2], defining the
implementation of the SlowDoS detection algorithm that will be used in the ANASTACIA instance.

2.2.2 UTRC Data Analysis Engine
UTRC data analysis engine learns a constraint-based decision model to identify compromised cyber-physical
devices. A novel approach to identify attacker by making use of Constraint Satisfaction Problem (CSP) and
declarative programming frameworks has been proposed. The main contributions are twofold, listed as
follows: a) learning constraint-based model for capturing the normal behaviour of a given cyber-physical
system, b) an approach that provides explanation when a potential anomaly is detected by reporting which
constraints fails to satisfy the model, c) an approach to incorporate user-defined constraints that can be easily
integrated with the constraints learn from the data. The developed behaviour engine can handle multiple
advanced attacks of different types, such as MiTM and flooding. We experimentally demonstrate the utility
of our work on real datasets of cyber-physical device. This framework states constraints over network
packets, describing relations between several packets, and modelled using Constraint Programming (CP)
methodologies to find those intrusions. Although there are some Intrusion Detection Systems (IDSs) which
provide native methods, characterized from scratch to allow the description of outliers or anomaly
behaviour, which is found across several network packets, most IDSs either use signatures that only involve
network features or allow constraints between several network features. However, these constraints are
achieved in a very basic and limited way, often using ad-hoc tools. In contrast, our constraints are dynamic
and learned over the time.

Page 11 of 21

As described earlier in D4.3, our constraint model is composed of variables – extracted features from the
data, and constraints – representing the allowed occurrence of each feature value happening simultaneously
at any given point in time. The data format of the features can be of several types: continuous, discrete,
events (on/off), etc. We choose to represent our model in terms of continuous variables and binary relations
expressed in the form of table constraint. In the case of continuous data type, we perform clustering to create
discrete domains. Note that the concept of over/underfitting applies when we generalise the data using
clustering to create intervals for the variable domains to build the model for normal behaviour. Each interval
is denoted by a symbolic integer value and the domain is the set of such integer values.

Algorithm Description:

Generally, most of the anomaly-based intrusion systems build a model of the normal behaviour of the
monitored system. The built model is then used to compare a currently observed behaviour to the normal
behaviour to determine whether the current state is a normal or an anomaly mode. Similarly, we have
followed three steps to get the best detection model: a) building an initial model, b) learning the best model,
and c) verification of the best model. In the first step, we create an initial model capturing all features and all
possible relations using a historical dataset that describes the normal behaviour of the monitored system.
Later in the second step, we use another labelled dataset that captures a mixture of normal and anomalous
behaviour in order to select the best sub-model in terms of performance. In the third step, we use another
unseen dataset to verify the performance of the selected sub-model.

Learning best model:

In order to learn the best model, we use an unseen labelled dataset (validation data) which contains data
describing the normal and abnormal behaviours of the system. This dataset can be obtained either by
applying attack functions on unseen data describing normal behaviour to insert malicious behaviour or for
example from simulations. No matter how the validation data is obtained it is a labelled dataset where for
each point in time we know whether the system describes a normal or abnormal behaviour.

We evaluate this dataset using the initial model. Evaluation is done by predicting a verdict (normal/anomaly)
for each time point in the dataset and comparing this to the ground truth described by the labels of the
dataset. Once we evaluated the dataset, we build an optimization problem, minimizing the error between
the ground truth and predicted verdicts such that the optimal sub-set of variables and relations from the
initial model is identified. In other words, we try to select a sub-set of features and relations such that the
error between ground truth and expected verdicts is minimum.

Figure 3 Dataset Evaluation Using the Initial Model

Page 12 of 21

In order to evaluate a dataset, we follow the steps shown in Figure 3. In here k denotes the number of raw
features and n denotes the number of raw and auxiliary features, thus k < n. Given a monitored system that
has d_k raw features we observe a value for each raw feature for each time-point. Generate step shows the
process of generating the required features of the model for each time point. We further refer to this as the
state of the monitored system with respect to the model. This state consists of set of values for all features
in a given point in time, S = {p_1, p_2, .., p_n} where p_i is the value associated to a feature for a given a time
instant. An assignment A = {a_1, a_2, …, a_n}, where a_i is a symbolic label associated to a feature that is
calculated for each state. This is done at the mapping step in Figure 3. An assignment has an assignment cost
associated to it which consists of the sum of feature costs for each feature and relation costs for each relation
for a given time-point. Once we obtain an assignment and its respective cost for all time-points in the
validation data following the steps shown in Figure 3 the following steps are taken:

1) Create cost table: We collect all assignment costs for all time points in the validation data with respect to
the initial model. Verdicts are obtained by comparing assignment costs to the threshold of the model. The
cost table serves as a tabular data structure that is used to get the best model. The cost table contains cost
information about all features and all relations in the initial model for every time point from validation data
analysed as shown above.

2) Compare predictions with ground truth: Since we have a labelled dataset in order to learn from the
predictions the initial model provided, we compare these predictions to the ground truth represented by the
labels in the dataset.

3) Select best model: We use an optimization model to select the best model. The optimization model takes
as input the following: cost table along with features, relations and threshold value of the initial model, the
verdicts associated to each time point and the respective ground truth. It outputs a sub-set of features,
relations and a threshold value, that will be used by the best model. A CP model is built to select the features
and relations with the following objective: select the minimum number of features and relations between
them, such that the difference between ground truth and the predicted verdict depending on the assignment
costs of the sub-selection is minimal. The difference between ground truth and verdict is obtained using the
notion of attack windows as described above. Once we obtain the learned threshold value and the set of
features and relations, we build the best model. We use a third unseen labelled dataset to test the
performance of the best model with regard to unseen data.

Once we obtain the best model, we deploy the learned model on monitoring agent. In the end, the developed
monitoring agent is able to detect following attacks, a) MiTM, b) Flooding, and c) Slow DoS. However, for the
project demonstration, we have deployed our monitoring agent from the perspective of MiTM attack only.

2.2.3 ATOS XL-SIEM
The XL-SIEM has been extended in the second iteration of the ANASTACIA platform in two ways:

1. Support to process and alert about additional attacks detected by the ANASTACIA probes deployed
in the IoT infrastructure.

2. Integration with the Verdict and Decision Support System (VDSS) at the Reaction module to calculate
risk levels associated to an incident.

The following subsections detail these advancements.

2.2.3.1 Integration of new attacks at the XL-SIEM

During the second iteration of the ANASTACIA platform the MMT probe has been extended with the
capability to provide with evidences of anomalous activities with the support of detecting SlowDDoS attacks
and detection of anomalous communication with untrusted destination that might infer a potential data
leakage. To be able to process the new information the following activities has been carried out at the XL-
SIEM:

Page 13 of 21

• Adaptation of the MMT plugin at the XL-SIEM agent to process the new evidences.
• Adaptation of the XL-SIEM server with new correlation rules.

Figure 4. XL-SIEM plugin schema for the MMT Probe after the second iteration

Adaptation of the MMT plugin at the XL-SIEM agent to process the new evidences

As described in D4.1, the XL-SIEM task is to normalize the events received, through its rsyslog server, in a
common format that is processable by the XL-SIEM server. The events normalized by the XL-SIEM agent is a
JSON which is described in Table 1 of D4.1. Among others, it contains the source IP of the identified event,
the destination IP of the targeted device or the date of the event. It is important to highlight the plugin_id
and plugin_sid, which identifies the type of message so that it can be understood by the XL-SIEM server.
Custom fields (called user data) allows to insert additional information contained in the event that is worth
to be preserved and transmitted to the XL-SIEM server.

In order to know what the information is to extract from the event received we need to analyse the taxonomy
of the event and the information contained. New events have been introduced in the second iteration of the
development of the ANASTACIA platform. The following is an example of event received from the MMT Probe
representing a SlowDoS incident.

2019-09-18T08:05:05.019Z hephasto.local MMT-Probe - - -
{"reportType":"security","probeID":3,"source":"/home/diego/capture_SlowComm.pc
ap","timestamp":1.568726462E9,"propertyID":77,"verdict":"detected","securityTy
pe":"attack","cause":"SlowComm DDos
attack","sourceIP":"150.145.21.204","destIP":"150.145.11.130","sourceMAC":"AA-
AA-AA-AA","destMAC":"BB-BB-BB"}

The following table represents the matching between the fields received in the MMT probe and the
normalized event fields:
Table 2. Matching of fields between MMT Probe and normalized event for "SlowComm" events

MMT Probe Event field Normalized event field Value in example

XL-SIEM server VDSS

XL-SIEM agent

DDoS Detection
stats SQLi SlowComm Untrusted

destination

New

Rsyslog server

DPI Analysis (MMT Probe)

Plugins
New

Page 14 of 21

not applicable plugin_id 32000

not applicable plugin_sid 133

2019-09-18T09:08:05.019Z date 2019-09-18T09:08:05.019Z

sourceIP src_ip 150.145.21.204

destIP dst_ip 150.145.11.130

sourceMAC userdata1 AA-AA-AA-AA

destMAC userdata2 BB-BB-BB

verdict userdata3 detected

probeID userdata5 3

source userdata6 /home/diego/capture_SlowComm.pcap

propertyID userdata7 77

timestamp userdata8 1.568726462E9

cause not applicable. Used to
identify type of event

SlowComm DDos attack

The normalized event results in the following JSON:
2019-09-18 09:08:05,019 Output [INFO]:
{"event":{
 "type":"detector",
 "date":"1568797685",
 "device":"10.0.2.4",
 "interface":"enp0s3",
 "plugin_id":"32000",
 "plugin_sid":"133",
 "src_ip":"150.145.21.204",
 "dst_ip":"150.145.11.130",
 "userdata1":"QUEtQUEtQUE=",
 "userdata2":"QkItQkItQkI=",
 "userdata3":"ZGV0ZWN0ZWQ=",
 "userdata5":"Mw==",
 "userdata6":"L2hvbWUvZGllZ28vY2FwdHVyZV9TbG93Q29tbS5wY2Fw",
 "userdata7":"Nzc=",
 "userdata8":"MS41Njg3MjY0NjJFOQ==",
 "log":"U2VwIDE4IDA5OjA4OjA1IDEyNy4wLjAuMSBNTVQtUHJvYmUgLSAtIC0geyJyZXBvcnRUeXBlI
joic2VjdXJpdHkiLCJwcm9iZUlEIjozLCJzb3VyY2UiOiIvaG9tZS9kaWVnby9jYXB0dXJlX1Nsb3dDb21tLnBj
YXAiLCJ0aW1lc3RhbXAiOjEuNTY4NzI2NDYyRTksInByb3BlcnR5SUQiOjc3LCJ2ZXJkaWN0IjoiZGV0ZWN0ZWQ
iLCJzZWN1cml0eVR5cGUiOiJhdHRhY2siLCJjYXVzZSI6IlNsb3dDb21tIEREb3MgYXR0YWNrIiwic291cmNlSV
AiOiIxNTAuMTQ1LjIxLjIwNCIsImRlc3RJUCI6IjE1MC4xNDUuMTEuMTMwIiwic291cmNlTUFDIjoiQUEtQUEtQ
UEiLCJkZXN0TUFDIjoiQkItQkItQkIifSA=",
 "fdate":"2019-09-18 09:08:05",
 "event_id":"d9f311e9-a789-0800-27ea-052cd2e7c882"
}}

It is worth noticing that the userdata fields are coded using base64. The log field contains the original event
received by the MMT Probe while the event_id uniquely identifies this event.

Similarly, for the event received from the MMT Probe representing a potential Data Leak, being it the
following:

Page 15 of 21

2019-09-18T09:08:04.513Z hephasto.local MMT-Probe - - -
{"reportType":"security","probeID":3,"source":"enp0s8","timestamp":1.568725931
E9,"propertyID":99,"verdict":"not_respected","securityType":"security","cause"
:"Data sent to untrusted destination - potential data
leakage","sourceIP":"10.0.3.90","destIP":"10.0.3.80","sourceMAC":"AA-AA-
AA","destMAC":"BB-BB-BB"}

The following table represents the matching between the fields received in the MMT probe and the
normalized event fields:

Table 3. Matching of fields between MMT Probe and normalized event for "Unstrusted destination" events

MMT Probe Event field Normalized event field Value in example

not applicable plugin_id 32000

not applicable plugin_sid 144

2019-09-18T09:09:08.513Z date 2019-09-18T09:09:08.513Z

sourceIP src_ip 150.145.21.204

destIP dst_ip 150.145.11.130

sourceMAC userdata1 AA-AA-AA-AA

destMAC userdata2 BB-BB-BB

verdict userdata3 detected

securityType userdata4 security

probeID userdata5 3

source userdata6 /home/diego/capture_SlowComm.pcap

propertyID userdata7 99

timestamp userdata8 1.568725931E9

cause not applicable. Used to
identify type of event

Data sent to untrusted
destination - potential data
leakage

The normalized event results in the following JSON:

2019-09-18 09:08:04,513 Output [INFO]:
{"event":{
 "type":"detector",
 "date":"1568797684",
 "device":"10.0.2.4",
 "interface":"enp0s3",
 "plugin_id":"32000",
 "plugin_sid":"144",
 "src_ip":"10.0.3.90",
 "dst_ip":"10.0.3.80",
 "userdata1":"QUEtQUEtQUE=",
 "userdata2":"QkItQkItQkI=",

Page 16 of 21

 "userdata3":"bm90X3Jlc3BlY3RlZA==",
 "userdata4":"c2VjdXJpdHk=",
 "userdata5":"Mw==",
 "userdata6":"ZW5wMHM4",
 "userdata7":"OTk=",
 "userdata8":"MS41Njg3MjU5MzFFOQ==",
 "log":"U2VwIDE4IDA5OjA4OjA0IDEyNy4wLjAuMSBNTVQtUHJvYmUgLSAtIC0gey
JyZXBvcnRUeXBlIjoic2VjdXJpdHkiLCJwcm9iZUlEIjozLCJzb3VyY2UiOiJlbnAwczgiL
CJ0aW1lc3RhbXAiOjEuNTY4NzI1OTMxRTksInByb3BlcnR5SUQiOjk5LCJ2ZXJkaWN0Ijoi
bm90X3Jlc3BlY3RlZCIsInNlY3VyaXR5VHlwZSI6InNlY3VyaXR5IiwiY2F1c2UiOiJEYXR
hIHNlbnQgdG8gdW50cnVzdGVkIGRlc3RpbmF0aW9uIC0gcG90ZW50aWFsIGRhdGEgbGVha2
FnZSIsInNvdXJjZUlQIjoiMTAuMC4zLjkwIiwiZGVzdElQIjoiMTAuMC4zLjgwIiwic291c
mNlTUFDIjoiQUEtQUEtQUEiLCJkZXN0TUFDIjoiQkItQkItQkIifSA=",
 "fdate":"2019-09-18 09:08:04",
 "event_id":"d9f311e9-a789-0800-27ea-052cd29a77bc"
}}

Adaptation of the XL-SIEM server with new correlation rules

The next step in the process of processing new events is the configuration of the XL-SIEM server to trigger
the corresponding alerts when those events are received. As described above, two important fields are used
at the XL-SIEM server to identify the new events: the plugin_id, which identifies the probe that sent the event
(in this case it is 32000 which corresponds to the events received from the MMT Probe) and the plugin_sid
which identifies the type of event (in this case it is 133 for the SlowComm event and 144 for the untrusted
destination event).

With this information new rules are created at the XL-SIEM to trigger alerts associated to those events. There
are many possibilities to create those rules, adding conditions that allows to fine tune the generation of the
alert to certain context, associated to aspects such as the value of the fields received, the number of events
received in certain period of time, etc. In this case, the rules are created to trigger an alert when two events
received from the same probe. The rule specifies that for a time window of 60 seconds, no alerts are repeated
even if they are received with the same source IP. This is used to avoid repetition of the same alert. The rule
also force that the events received must have the same source IP and destination IP in order to trigger an
alert. This is done not to mix events associated to different targets, which probably might denote a different
incident. The following table details the alert using the Esper notation used at the XL-SIEM:
Table 4. New rules created at the XL-SIEM server

Name Rule Priority Reliability

MMT Probe - Potential
data leakage detected

pattern [every-distinct(a.src_ip, 60 seconds)
a=MMT_Probe_Untrusted ->
b=MMT_Probe_Untrusted ((b.src_ip=a.src_ip) and
(b.dst_ip=a.dst_ip))]

2 8

MMT Probe - Slow
DDoS Attack Detected

pattern [every-distinct(a.src_ip, 60 seconds)
a=MMT_Probe_SlowComm ->
b=MMT_Probe_SlowComm ((b.src_ip=a.src_ip) and
(b.dst_ip=a.dst_ip))]

5 9

The following screenshot represents the ATOS XL-SIEM dashboard showing the new alerts triggered when
new events are received from the MMT Probe.

Page 17 of 21

Figure 5. XL-SIEM dashboard showing alerts for the new events

2.2.3.2 Integration with the VDSS

As it can be seen in Figure 5, every alert there is a Risk level which is calculated by the XL-SIEM by using
different values associated to the events received and to the device affected. As described in D4.1, this risk
level is calculated using the following formula:

𝑅𝑖𝑠𝑘 = 	
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∗ 𝐴𝑠𝑠𝑒𝑡23456789:;

25

Reliability is a value that represents the accuracy of the detection, while the Priority represents the
importance of the event received. Both values are given by the CISO using the XL-SIEM dashboard. The third
variable is the Asset importance, which represents the criticality of the device affected by the attack. During
the first iteration of the ANASTACIA implementation this value was inserted by the CISO using the XL-SIEM
dashboard. After its integration with the VDSS (see D4.5), this value is calculated automatically based on the
location and the type of device. The XL-SIEM server is capable of requesting to the Security Model Service
this information, which is retrieved directly from the Orchestrator. The CISO might have set at the VDSS levels
of importance to the different locations of the IoT infrastructure, and also to the different type of devices.

Figure 6. GUI used by the CISO to set location and device type importance levels

Page 18 of 21

This information is used by the XL-SIEM to define the level of risk, resulting in the following formula. Being LI
and DTI the Location Importance and the Device Type Importance scores respectively:

𝑅𝑖𝑠𝑘 = 	
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∗ 𝐴𝑠𝑠𝑒𝑡23456789:;	(𝐿𝐼, 𝐷𝑇𝐼)

25

Being

𝐴𝑠𝑠𝑒𝑡23456789:; = 	
𝐿𝐼 + 𝐷𝑇𝐼

2

With this we can obtain a more accurate risk level that is tailored to the characteristics of the IoT
infrastructure to monitor. The alert generated by the XL-SIEM is sent to a RabbitMQ server (using the queue
exchange_alarms). Further details of the rest of the process is given in D4.5 as part of the VDSS activities at
the Reaction Module.

2.2.4 Resource and QoS Monitoring Component
The orchestration system provides an internal component, named “Resource and QoS monitoring”, that
serves to monitor the resource utilization at the network level in terms of end-to-end delay and bandwidth.
This component also serves for monitoring different resources at deployed Virtual Network Functions (VNFs)
in terms of CPU, RAM, and storage. The security orchestrator uses this component for ensuring life cycle
management (LCM) of deployed services. The collected information enables the security orchestrator to
ensure the efficient LCM of VNFs by either deploying or destroying VNFs according to the VNF and network
states. This strategy helps for ensuring the KPIs in terms of security, delay, bandwidth, and QoS by mitigating
the overload of VNFs and minimizing the cost by deploying the minimum number of VNFs at the right
locations. In the literature, many tools have been suggested to monitor the network and the resources at
different VNFs.

2.2.4.1 Open-Source Resource and Network Monitoring Tools

2.2.4.1.1 Nagios Core

Nagios2 is one of the oldest and best monitoring systems that has been used to monitor the network. The
open-source version of Nagios is Nagios Core that can enable different users to get real-time visibility about
different hosts and services belonging to the network. This software also offers several alerts that could be
used for optimizing and customizing the network and resources at each VNF. Nagios can monitor RAM, CPU
and disk loads, and the number of currently running processes at each VNF. Nagios also can monitor services,
such as SMTP, POP3, HTTP and other common network protocols used at each VNF.

2.2.4.1.2 Icinga

Icinga3 is a tool that is developed as a branch from Nagios to offer more functionality to the Nagios Core suite.
Icinga is designed to be easy to install and use. It offers more functionalities than Nagios for monitoring the
network. This tool utilizes text-based configuration files for configuring different parameters. From the
server, different agents would be installed at different hosts, and then the server periodically keeps
monitoring the resources at each host.

2.2.4.1.3 Zabbix

Zabbix is one of the first tools that has been proposed for monitoring the network and services. This tool
provides many out-of-the-box features that make it easy to manage and extend. The users do not have to
deal with a glut of plugins. It can also offer real-time monitoring metrics across large-scale networks.

2 https://www.nagios.org/projects/nagios-core/
3 https://github.com/Icinga/icinga2

Page 19 of 21

2.2.4.1.4 Prometheus

Similar to the previous tools, Prometheus is also an open-source system that offers the network and resource
monitoring and alerting toolkit. Prometheus has been adopted by many companies and organizations to
monitor their networks. Recently, in 2016, Prometheus joined the Cloud Native Computing Foundation.
Prometheus has the following features. IT offers a multi-dimensional data model with time series data
identified by metric names and key/value pairs. The time series collection happens via a pull model over
HTTP. It adopts also a flexible query language, named PromQL, which offers more flexibility for retrieving
different resource information. The hosts can be discovered using a service discovery or through manual
configuration. Finally, it offers multiple modes of graphing and dashes boarding tools.

2.2.4.1.5 Psutil

Psutil is a Python library that provides process and system utilities for monitoring different hosts and
networks. Psutil is a cross-platform library for retrieving information on running processes and system
utilization (CPU, RAM, disk, network, sensors). It is useful mainly for system monitoring, profiling and limiting
process resources and management of running processes. It implements many functionalities offered by
UNIX command-line tools including ps, top, lsof, netstat, ifconfig, who, df, kill, free, nice, ionice, iostat, iotop,
uptime, pidof, tty, taskset and pmap. It supports many platforms including Linux, Windows, macOS and
others.

2.2.4.2 ANASTACIA QOS AND RESOURCE MONITORING TOOL.

Using the Psutil library and Python language, we have developed the ANASTACIA QoS and resource monitor
tool that monitors the resources at different VNFs and the delay and bandwidth of the network. To take the
right decisions at the security orchestration plane, this component is leveraged for collecting the information
about the resources of different deployed VNFs and the network in terms of end-to-end delay and
bandwidth. When a VNF is instantiated, the security orchestrator injects an ANASTACIA QoS and resource
monitor daemon into that instance, this daemon keeps sending the resource usage to the security
orchestrator. The monitoring daemon keeps collecting in real-time the resources usage including the CPU
usage percentage, memory details available, used and total. The monitoring agent also provides information
about the network in terms of delay and bandwidth, as well as the security levels of different paths. We plan
in the future to explore the ONOS API that exposes REST API for the net metering and JAVA API for QoS
providing (Type, rate, and size).

Page 20 of 21

3 CONCLUSIONS
This document presented the development advances of the Monitoring Module of the ANASTACIA platform.
These changes are grouped into two principal axes.

First, the design of the Monitoring Module suffered minor modifications in order to support the addition of
the new Resource and QoS Monitoring component. Since this new member has been conceived as an
extension of the Security Orchestrator, it does not impact on the security monitoring functionality provided
by the components already present in the module.

Along with the general design changes, the document also exposes the major changes on the four main
members of the monitoring module:

• The Montimage Monitoring Tool (MMT): This software has been extended to support the detection
of Slow DoS attacks. This was achieved by implementing an EFSM-based detection rule which
analyses the network floes and follows the state of the client-server connection. To detect the
attack, the rule keeps track of the partial times spent in transferring the data, raising an alert when
the data transfer time exceeds a threshold.

• UTRC Data Analysis Engine: This component was extended with a refined model crafted to monitor
the data measured form IoT sensors. The new model was build using constrained-based
programming and following a three-steps training: first, a first model is trained using a historical
dataset of normal behaviour, aiming to model all the possible parameters and relations among them;
secondly, a better model is learned by means of refining the previous one using mixed datasets
(containing both normal and tampered values), aiming to reduce the number of parameters used to
identify the presence of an attack; finally, the model is validated using an third dataset

• ATOS XL SIEM: During the second part of the project, this component has seen two principal changes.
On one hand, the XL SIEM was extended to support the security alerts corresponding to the novel
attacks supported (e.g. SlowDoS). On the other hand, it has also been extended to integrate it with
the Verdict and Decision Support System (VDSS) and calculate the risk levels associated with the
detected security issues.

• Resource and QoS Monitoring: This Security Orchestrator extension was implemented to allow the
SO ensuring the lifecycle management of all the deployed services. This component has been
implemented using open-source monitoring tool, named psutil, inserting instances of this tools in
any new deployed instance in order to monitor the used resources and ensure the QoS of the whole
platform.

This deliverable finishes the activities of the T4.1, providing the ANASTACIA implementors with a simple yet
flexible design, allowing them to include multiple security solutions into a single, federated security platform.

Page 21 of 21

4 REFERENCES
[1] Aiello, M., Cambiaso, E., Scaglione, S., & Papaleo, G. (2013, July). A similarity based approach for
application DoS attacks detection. In 2013 IEEE Symposium on Computers and Communications (ISCC) (pp.
000430-000435). IEEE.
[2] Cambiaso, E., Papaleo, G., Chiola, G., & Aiello, M. (2013). Slow DoS attacks: definition and
categorisation. International Journal of Trust Management in Computing and Communications, 1(3-4), 300-
319.
[3] Cambiaso, E., Papaleo, G., Chiola, G., & Aiello, M. (2016). A Network Traffic Representation Model
for Detecting Application Layer Attacks. International Journal of Computing and Digital Systems, 5(01).
[4] Cambiaso, E., Papaleo, G., & Aiello, M. (2017). Slowcomm: Design, development and performance
evaluation of a new slow DoS attack. Journal of Information Security and Applications, 35, 23-31.
[5] Fielding, R. & Reschke, Ed. (2014). Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing. [Online. Accessed: 19/09/2019]. https://tools.ietf.org/html/rfc7230.
[6] A. Petrenko, S. Boroday and R. Groz, "Confirming configurations in EFSM testing," in IEEE Transactions
on Software Engineering, vol. 30, no. 1, pp. 29-42, Jan. 2004.
doi: 10.1109/TSE.2004.1265734
[7] Zaghal, R. Y., & Khan, J. I. (2005). EFSM/SDL modeling of the original TCP standard (RFC793) and the
Congestion Control Mechanism of TCP Reno. URL: http://www. medianet. kent. edu/technicalreports. html.

